强化学习
计算机科学
非线性系统
控制理论(社会学)
公制(单位)
控制器(灌溉)
李雅普诺夫函数
反向
数学优化
数学
人工智能
控制(管理)
工程类
生物
物理
量子力学
运营管理
几何学
农学
作者
Hamed Jabbari Asl,Eiji Uchibe
标识
DOI:10.1109/ssci51031.2022.10022226
摘要
In this paper, we present an online data-driven inverse reinforcement learning (IRL) method for estimating the cost function of continuous-time linear and nonlinear deterministic systems from state and input measurements. Our approach utilizes Bellman error, obtained from integral reinforcement learning, with error derived from the closed-form equation of an optimal controller as the performance metric to develop a recursive IRL technique. Our proposed scheme does not require the time derivative of states or the drift dynamics of a system. We describe a Lyapunov-based analysis to show the ultimate boundedness of the estimation errors. Simulation studies demonstrate the effectiveness of the proposed method.
科研通智能强力驱动
Strongly Powered by AbleSci AI