Targeted Learning: Toward a Future Informed by Real-World Evidence

加权 倾向得分匹配 非参数统计 因果推理 计算机科学 真实世界的证据 置信区间 匹配(统计) 透明度(行为) 点估计 风险分析(工程) 计量经济学 机器学习 精算学 医学 统计 数学 业务 放射科 内科学 计算机安全
作者
Susan Gruber,Rachael V. Phillips,Hana Lee,Martin Ho,John Concato,Mark J. van der Laan
出处
期刊:Statistics in Biopharmaceutical Research [Informa]
卷期号:16 (1): 11-25 被引量:9
标识
DOI:10.1080/19466315.2023.2182356
摘要

The 21st Century Cures Act of 2016 includes a provision for the U.S. Food and Drug Administration10.13039/100000038 (FDA) to evaluate the potential use of Real-World Evidence (RWE) to support new indications for use for previously approved drugs, and to satisfy post-approval study requirements. Extracting reliable evidence from Real-World Data (RWD) is often complicated by a lack of treatment randomization, potential intercurrent events, and informative loss to follow-up. Targeted Learning (TL) is a sub-field of statistics that provides a rigorous framework to help address these challenges. The TL Roadmap offers a step-by-step guide to generating valid evidence and assessing its reliability. Following these steps produces an extensive amount of information for assessing whether the study provides reliable scientific evidence, including in support of regulatory decision-making. This article presents two case studies that illustrate the utility of following the roadmap. We used targeted minimum loss-based estimation combined with super learning to estimate causal effects. We also compared these findings with those obtained from an unadjusted analysis, propensity score matching, and inverse probability weighting. Nonparametric sensitivity analyses illuminate how departures from (untestable) causal assumptions affect point estimates and confidence interval bounds that would impact the substantive conclusion drawn from the study. TL's thorough approach to learning from data provides transparency, allowing trust in RWE to be earned whenever it is warranted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
cheezle完成签到,获得积分10
1秒前
大饼完成签到,获得积分10
2秒前
老实棒棒糖关注了科研通微信公众号
2秒前
六五发布了新的文献求助10
3秒前
3秒前
风筝鱼发布了新的文献求助30
3秒前
4秒前
4秒前
5秒前
lym54发布了新的文献求助10
5秒前
调皮的笑阳完成签到 ,获得积分10
6秒前
6秒前
李琳完成签到,获得积分10
6秒前
如意觅露发布了新的文献求助10
7秒前
长生完成签到,获得积分10
7秒前
9秒前
9秒前
9秒前
饶天源发布了新的文献求助10
10秒前
我先睡了完成签到,获得积分10
11秒前
李健应助FFF采纳,获得10
12秒前
大饼发布了新的文献求助10
13秒前
钱多多完成签到,获得积分10
13秒前
啸西风完成签到,获得积分10
13秒前
三七完成签到 ,获得积分10
14秒前
小蘑菇应助perdgs采纳,获得10
14秒前
wangdada完成签到,获得积分10
16秒前
LG完成签到 ,获得积分10
16秒前
科研通AI6应助桃博采纳,获得10
16秒前
完美世界应助KYG采纳,获得10
16秒前
SciGPT应助Benji采纳,获得10
17秒前
17秒前
18秒前
Curry完成签到 ,获得积分10
20秒前
甜美的沅完成签到 ,获得积分10
20秒前
浮游应助文静修杰采纳,获得10
20秒前
熊月完成签到,获得积分20
20秒前
Tanyang完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286706
求助须知:如何正确求助?哪些是违规求助? 4439351
关于积分的说明 13821187
捐赠科研通 4321274
什么是DOI,文献DOI怎么找? 2371784
邀请新用户注册赠送积分活动 1367335
关于科研通互助平台的介绍 1330812