量子行走
随机游动
哈达玛变换
马尔可夫链
数学
一维异质随机游动
直线(几何图形)
循环删除随机漫步
组合数学
离散数学
二次方程
统计物理学
区间(图论)
混合(物理)
自动回避步行
量子
量子算法
物理
量子力学
数学分析
统计
几何学
作者
Nayak Ashwin,Ashvin Vishwanath
出处
期刊:Cornell University - arXiv
日期:2000-12-13
被引量:148
摘要
Motivated by the immense success of random walk and Markov chain methods in the design of classical algorithms, we consider {\em quantum\/} walks on graphs. We analyse in detail the behaviour of unbiased quantum walk on the line, with the example of a typical walk, the ``Hadamard walk''''. In particular, we show that after~$t$ time steps, the probability distribution on the line induced by the Hadamard walk is almost uniformly distributed over the interval~$[-t/\sqrt{2},\;t/\sqrt{2}]$. This implies that the same walk defined on the circle mixes in {\em linear\/} time. This is in direct contrast with the quadratic mixing time for the corresponding classical walk. We conclude by indicating how our techniques may be applied to more general graphs.
科研通智能强力驱动
Strongly Powered by AbleSci AI