Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy

纳米颗粒 拉曼光谱 等离子体子 光谱学 生物分子 表面增强拉曼光谱 材料科学 拉曼散射 纳米技术 等离子纳米粒子 化学 光电子学 光学 量子力学 物理
作者
Jan Krajczewski,Andrzej Kudelski
出处
期刊:Frontiers in Chemistry [Frontiers Media]
卷期号:7 被引量:51
标识
DOI:10.3389/fchem.2019.00410
摘要

In 2010, Tian et al. reported the development of a new, relatively sensitive method of the chemical analysis of various surfaces, including buried interfaces (for example the surfaces of solid samples in a high-pressure gas or a liquid), which makes it possible to analyze various biological samples in situ. They called their method shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). SHINERS spectroscopy is a type of surface-enhanced Raman spectroscopy (SERS) in which an increase in the efficiency of the Raman scattering is induced by plasmonic nanoparticles acting as electromagnetic resonators that locally significantly enhance the electric field of the incident electromagnetic radiation. In the case of SHINERS measurements, the plasmonic nanoparticles are covered by a very thin transparent protective layer (formed, for example, from various oxides such as SiO2, MnO2, TiO2, or organic polymers) that does not significantly damp surface electromagnetic enhancement, but does separate the nanoparticles from direct contact with the probed material and keeps them from agglomerating. Preventing direct contact between the metal plasmonic structures and the analysed samples is especially important when biological samples are investigated, because direct interaction between the metal nanoparticles and various biological molecules (e.g. peptides) may lead to a change in the structure of those biomolecules. In this mini-review, the state of the art of SHINERS spectroscopy is briefly described.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
贪玩的书包完成签到,获得积分10
1秒前
CodeCraft应助Liv采纳,获得10
2秒前
节课本完成签到,获得积分10
2秒前
2秒前
乐乐应助菜菜采纳,获得10
2秒前
平常的毛豆应助SunSun采纳,获得30
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
直率的柚子完成签到,获得积分10
3秒前
4秒前
大模型应助Treasure98采纳,获得10
5秒前
5秒前
摇摇奶昔发布了新的文献求助10
5秒前
Fox发布了新的文献求助10
6秒前
6秒前
7秒前
白水发布了新的文献求助10
7秒前
wanci应助YanBlazeX采纳,获得10
7秒前
奋斗忆南完成签到 ,获得积分20
7秒前
希望天下0贩的0应助wlqydyxf采纳,获得10
8秒前
让让发布了新的文献求助10
8秒前
李健的小迷弟应助胡茶茶采纳,获得10
9秒前
今后应助玉汝于成采纳,获得10
9秒前
丘比特应助陈强采纳,获得10
10秒前
yohana完成签到 ,获得积分10
10秒前
QASD发布了新的文献求助10
11秒前
酷波er应助摇摇奶昔采纳,获得10
11秒前
11秒前
11秒前
11秒前
13秒前
奋斗忆南关注了科研通微信公众号
13秒前
CodeCraft应助坚定的向雪采纳,获得10
13秒前
错过的风景完成签到,获得积分10
14秒前
15秒前
能干蜜蜂完成签到,获得积分10
15秒前
15秒前
15秒前
16秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
Building Quantum Computers 500
近赤外発光材料の開発とOLEDの高性能化 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870313
求助须知:如何正确求助?哪些是违规求助? 3412502
关于积分的说明 10679848
捐赠科研通 3137012
什么是DOI,文献DOI怎么找? 1730541
邀请新用户注册赠送积分活动 834078
科研通“疑难数据库(出版商)”最低求助积分说明 781072