控制理论(社会学)
有界函数
观察员(物理)
数学
代数数
差速器(机械装置)
先验与后验
背景(考古学)
鲁棒控制
稳定性理论
线性系统
控制系统
计算机科学
控制(管理)
非线性系统
数学分析
古生物学
工程类
认识论
物理
量子力学
哲学
人工智能
电气工程
生物
航空航天工程
作者
Alessandro Di Giorgio,Antonio Pietrabissa,Francesco Delli Priscoli,Alberto Isidori
标识
DOI:10.1080/00207179.2018.1540882
摘要
Thispaperaddressestheproblemofrobustlystabilisingaclassoflineardifferential-algebraic systems char- acterised by autonomous and asymptotically stable zero dynamics, in spite of parameter uncertainties ranging over apriori fixed bounded sets. We exploit recent results related to the structural properties and normal forms of this class of systems and propose a robust control that asymptotically recovers, in practical terms, the performance of a nominal, though non-implementable, stabilising control. The proposed con- trol combines a partial output feedback control, aimed at letting the system behave as a regular system, and a robust control, based on an extended observer, using which the dynamic of the closed loop system is rendered arbitrarily close to the one of a properly selected stable system. The extended observer, origi- nally conceived in the context of standard differential systems, is here shown to be the key ingredient for robustly stabilising the targeted class of differential-algebraic systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI