Highlighting nerves and blood vessels for ultrasound-guided axillary nerve block procedures using neural networks

医学 威尔科克森符号秩检验 卷积神经网络 超声波 旋转(数学) 块(置换群论) 神经阻滞 人工智能 放射科 计算机科学 曼惠特尼U检验 内科学 几何学 数学
作者
Erik Smistad,Kaj Fredrik Johansen,Daniel Høyer Iversen,Ingerid Reinertsen
出处
期刊:Journal of medical imaging [SPIE]
卷期号:5 (04): 1-1 被引量:50
标识
DOI:10.1117/1.jmi.5.4.044004
摘要

Ultrasound images acquired during axillary nerve block procedures can be difficult to interpret. Highlighting the important structures, such as nerves and blood vessels, may be useful for the training of inexperienced users. A deep convolutional neural network is used to identify the musculocutaneous, median, ulnar, and radial nerves, as well as the blood vessels in ultrasound images. A dataset of 49 subjects is collected and used for training and evaluation of the neural network. Several image augmentations, such as rotation, elastic deformation, shadows, and horizontal flipping, are tested. The neural network is evaluated using cross validation. The results showed that the blood vessels were the easiest to detect with a precision and recall above 0.8. Among the nerves, the median and ulnar nerves were the easiest to detect with an F -score of 0.73 and 0.62, respectively. The radial nerve was the hardest to detect with an F -score of 0.39. Image augmentations proved effective, increasing F -score by as much as 0.13. A Wilcoxon signed-rank test showed that the improvement from rotation, shadow, and elastic deformation augmentations were significant and the combination of all augmentations gave the best result. The results are promising; however, there is more work to be done, as the precision and recall are still too low. A larger dataset is most likely needed to improve accuracy, in combination with anatomical and temporal models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pu完成签到,获得积分20
刚刚
旭a完成签到,获得积分10
刚刚
泥跌来咯完成签到,获得积分10
1秒前
1秒前
Singularity应助森归湖遇鹿采纳,获得10
1秒前
今后应助义气如萱采纳,获得10
1秒前
Www关注了科研通微信公众号
1秒前
玉尘发布了新的文献求助30
2秒前
施宇宙完成签到,获得积分10
2秒前
jixuchance完成签到,获得积分10
2秒前
3秒前
阿湫发布了新的文献求助30
3秒前
机灵柚子应助ComeOn采纳,获得10
3秒前
18969431868发布了新的文献求助10
3秒前
3秒前
T_MC郭完成签到,获得积分10
3秒前
4秒前
4秒前
xiongyue完成签到,获得积分10
4秒前
thy完成签到,获得积分10
4秒前
菜头完成签到,获得积分10
5秒前
wsysweet完成签到,获得积分10
5秒前
5秒前
雨后完成签到 ,获得积分10
5秒前
科研菜鸡623完成签到,获得积分10
5秒前
企鹅完成签到,获得积分20
6秒前
张张磊发布了新的文献求助10
6秒前
呜呜呜发布了新的文献求助10
6秒前
chen发布了新的文献求助10
7秒前
高贵傲易发布了新的文献求助30
7秒前
0per完成签到,获得积分10
8秒前
隐形鸣凤发布了新的文献求助10
8秒前
沈达应助木木采纳,获得10
9秒前
小赵完成签到,获得积分10
9秒前
9秒前
猴猴发布了新的文献求助10
9秒前
10秒前
jzhan142完成签到,获得积分10
10秒前
科研小白完成签到,获得积分10
10秒前
三山五岳发布了新的文献求助10
10秒前
高分求助中
ISCN 2024 - An International System for Human Cytogenomic Nomenclature (2024) 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788836
求助须知:如何正确求助?哪些是违规求助? 3334022
关于积分的说明 10266605
捐赠科研通 3050176
什么是DOI,文献DOI怎么找? 1673928
邀请新用户注册赠送积分活动 802296
科研通“疑难数据库(出版商)”最低求助积分说明 760560