已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Adaptive and large-scale service composition based on deep reinforcement learning

计算机科学 强化学习 可扩展性 Web服务 服务(商务) 分布式计算 服务质量 适应性 服务计算 人工智能 计算机网络 数据库 万维网 经济 经济 生态学 生物
作者
Hongbing Wang,Mingzhu Gu,Qi Yu,Yong Tao,Jiajie Li,Huanhuan Fei,Yan Jia,Wei Zhao,Tianjing Hong
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:180: 75-90 被引量:51
标识
DOI:10.1016/j.knosys.2019.05.020
摘要

In a service-oriented system, simple services are combined to form value-added services to meet users’ complex requirements. As a result, service composition has become a common practice in service computing. With the rapid development of web service technology, a massive number of web services with the same functionality but different non-functional attributes (e.g., QoS) are emerging. The increasingly complex user requirements and the large number of services lead to a significant challenge to select the optimal services from numerous candidates to achieve an optimal composition. Meanwhile, web services accessible via computer networks are inherently dynamic and the environment of service composition is also complex and unstable. Thus, service composition solutions need to be adaptable to the dynamic environment. To address these key challenges, we propose a new service composition scheme based on Deep Reinforcement Learning (DRL) for adaptive and large-scale service composition. The proposed approach is more suitable for the partially observable service environment, making it work better for real-world settings. A recurrent neural network is adopted to improve reinforcement learning, which can predict the objective function and enhance the ability to express and generalize. In addition, we employ the heuristic behavior selection strategy, in which the state set is divided into the hidden and fully observable state sets, to perform the targeted behavior selection strategy when facing with different types of states. The experimental results justify the effectiveness and efficiency, scalability, and adaptability of our methods by showing obvious advantages in composition results and efficiency for service composition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zorro3574发布了新的文献求助10
2秒前
4秒前
4秒前
我是老大应助YOLO采纳,获得10
4秒前
事竟成完成签到 ,获得积分10
6秒前
JamesPei应助跳跃的青曼采纳,获得10
6秒前
利乐完成签到,获得积分10
6秒前
DALLOON发布了新的文献求助10
7秒前
哈哈完成签到 ,获得积分10
7秒前
9秒前
11秒前
浮游应助欲扬先抑采纳,获得10
11秒前
可靠的蜗牛完成签到 ,获得积分10
13秒前
14秒前
wyf发布了新的文献求助10
14秒前
斯文败类应助hilaral采纳,获得10
15秒前
慕青应助涨涨涨采纳,获得10
16秒前
大帅哥完成签到,获得积分10
17秒前
kk发布了新的文献求助10
18秒前
WGS发布了新的文献求助10
19秒前
LLL发布了新的文献求助10
21秒前
21秒前
WenzhengXu完成签到,获得积分10
23秒前
危佳豪完成签到,获得积分10
24秒前
25秒前
26秒前
27秒前
zorro3574发布了新的文献求助10
27秒前
28秒前
29秒前
同尘完成签到,获得积分10
29秒前
29秒前
涨涨涨发布了新的文献求助10
30秒前
寒冷的绿真完成签到 ,获得积分10
30秒前
充电宝应助corner采纳,获得10
31秒前
搜集达人应助韩明佐采纳,获得10
32秒前
WGS完成签到,获得积分10
32秒前
33秒前
赘婿应助flyindancewei采纳,获得10
34秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5062734
求助须知:如何正确求助?哪些是违规求助? 4286445
关于积分的说明 13357088
捐赠科研通 4104266
什么是DOI,文献DOI怎么找? 2247395
邀请新用户注册赠送积分活动 1252983
关于科研通互助平台的介绍 1183935