An Artificial Agent for Robust Image Registration

人工智能 计算机科学 计算机视觉 图像配准 图像(数学) 模式识别(心理学) 稳健性(进化)
作者
Rui Liao,Shun Miao,Pierre de Tournemire,Sasa Grbic,Ali Kamen,Tommaso Mansi,Dorin Comaniciu
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:31 (1): 4168-4175 被引量:96
摘要

3-D image registration, which involves aligning two or more images, is a critical step in a variety of medical applications from diagnosis to therapy. Image registration is commonly performed by optimizing an image matching metric as a cost function. However this task is challenging due to the non-convex nature of the matching metric over the plausible registration parameter space and insufficient approches for a robust optimization. As a result, current approaches are often customized to a specific problem and sensitive to image quality and artifacts. In this paper, we propose a completely different approach to image registration, inspired by how experts perform the task. We first cast the image registration problem as a strategic learning process, where the goal is to find the best sequence of motion actions (e.g. up, down, etc) that yields image alignment. Within this approach, an artificial agent is learned, modeled using deep convolutional neural networks, with 3D raw image data as the input, and the next optimal action as the output. To copy with the dimensionality of the problem, we propose a greedy supervised approach for an end-to-end training, coupled with attention-driven hierarchical strategy. The resulting registration approach inherently encodes both a data-driven matching metric and an optimal registration strategy (policy). We demonstrate on two 3-D/3-D medical image registration examples with drastically different nature of challenges, that the artificial agent outperforms several state-of-the-art registration methods by a large margin in terms of both accuracy and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幽默白竹完成签到,获得积分10
刚刚
2秒前
li梨完成签到,获得积分10
2秒前
宿舍发布了新的文献求助10
2秒前
无花果应助如风随水采纳,获得10
3秒前
思源应助杨凯采纳,获得10
4秒前
5秒前
充电宝应助白小白采纳,获得10
5秒前
8R60d8应助科研通管家采纳,获得10
5秒前
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
8R60d8应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
顾矜应助小天采纳,获得10
6秒前
陈平安完成签到 ,获得积分10
7秒前
狒狒完成签到,获得积分20
7秒前
15136780701完成签到 ,获得积分10
9秒前
11秒前
关卉完成签到,获得积分10
12秒前
Spirodelaz完成签到,获得积分10
14秒前
小白完成签到 ,获得积分10
14秒前
14秒前
123发布了新的文献求助10
15秒前
小蘑菇应助酷炫葵阴采纳,获得10
16秒前
科研通AI5应助发发采纳,获得10
16秒前
16秒前
16秒前
17秒前
17秒前
18秒前
silicon发布了新的文献求助10
18秒前
逸仙人完成签到,获得积分20
18秒前
严冥幽完成签到 ,获得积分10
20秒前
lgw完成签到,获得积分10
20秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807074
求助须知:如何正确求助?哪些是违规求助? 3351860
关于积分的说明 10356237
捐赠科研通 3067840
什么是DOI,文献DOI怎么找? 1684762
邀请新用户注册赠送积分活动 809899
科研通“疑难数据库(出版商)”最低求助积分说明 765767