Data-driven prediction of FRP strengthened reinforced concrete beam capacity based on interpretable ensemble learning algorithms

纤维增强塑料 集成学习 梁(结构) 钢筋混凝土 计算机科学 算法 结构工程 机器学习 人工智能 工程类
作者
Shuying Zhang,Shi‐Zhi Chen,Xin Jiang,Wanshui Han
出处
期刊:Structures [Elsevier BV]
卷期号:43: 860-877 被引量:20
标识
DOI:10.1016/j.istruc.2022.07.025
摘要

Fiber-reinforced polymer (FRP) materials are one of the commonly used materials for strengthening aged reinforced concrete (RC) beams. However, it is still challenging to accurately predict the flexural capacity of an FRP-strengthened RC beam due to the intricate mechanism. To overcome the limitation of mechanical-based models, a comprehensive database of FRP-strengthened RC beam experiments was collected to develop data-driven prediction models. Four different ensemble learning (EL) algorithms, namely random forest, adaptive boosting, gradient boosting decision tree, and extreme gradient boosting were used to realize this model based on this database. To demonstrate their superiority, these models were compared with representative empirical models and the ones based on single machine learning (ML) algorithms. The performances of the EL-based models were significantly better than those of the empirical models and single ML-based models. Thus, the EL-based models proposed in this study demonstrate potential for use in engineering applications. In addition, the Shapley additive explanation (SHAP) was introduced to interpret the importance of input features in the prediction process from local and global perspectives. Finally, reliability analysis was performed to calibrate the reduction coefficient of bearing capacity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yc发布了新的文献求助10
刚刚
Ashley发布了新的文献求助10
1秒前
1233330完成签到 ,获得积分10
1秒前
1秒前
1秒前
CodeCraft应助墨水采纳,获得10
1秒前
2秒前
CodeCraft应助俭朴的一曲采纳,获得10
2秒前
2秒前
3秒前
3秒前
xinlong完成签到,获得积分10
3秒前
02发布了新的文献求助10
3秒前
mingming发布了新的文献求助10
3秒前
4秒前
4秒前
上善若水关注了科研通微信公众号
5秒前
lazyg5403发布了新的文献求助10
6秒前
7秒前
yangbin710发布了新的文献求助10
7秒前
8秒前
1111发布了新的文献求助10
8秒前
8秒前
shijiaoshou发布了新的文献求助20
8秒前
椋鸟应助youyuguang采纳,获得10
8秒前
8秒前
zoe发布了新的文献求助10
9秒前
10秒前
小蘑菇应助Ashley采纳,获得10
10秒前
Nathan完成签到,获得积分0
11秒前
11秒前
大模型应助兴奋小丸子采纳,获得10
13秒前
科研通AI5应助宋鹏炜采纳,获得30
15秒前
123完成签到,获得积分10
15秒前
NexusExplorer应助21213采纳,获得30
15秒前
害羞紫伊发布了新的文献求助20
15秒前
16秒前
科研通AI5应助1111采纳,获得10
16秒前
wt完成签到,获得积分10
16秒前
小鹿斑斑比完成签到,获得积分10
17秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
中国临床肿瘤学会(CSCO)儿童及青少年白血病诊疗指南2025 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805753
求助须知:如何正确求助?哪些是违规求助? 3350623
关于积分的说明 10349982
捐赠科研通 3066532
什么是DOI,文献DOI怎么找? 1683847
邀请新用户注册赠送积分活动 809142
科研通“疑难数据库(出版商)”最低求助积分说明 765393