清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Detecting the sources of chemicals in the Black Sea using non-target screening and deep learning convolutional neural networks

工作流程 卷积神经网络 环境科学 流出物 海水 黑海 污染 计算机科学 海洋学 人工智能 环境工程 地质学 数据库 生态学 生物
作者
‪Nikiforos Alygizakis,Theodoros Giannakopoulos,Νikolaos S. Τhomaidis,Jaroslav Slobodnı́k
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:847: 157554-157554 被引量:16
标识
DOI:10.1016/j.scitotenv.2022.157554
摘要

The Black Sea is an important ecosystem, which is affected by various anthropogenic pressures, such as shipping activities and wastewater inputs from large coastal cities. Significant loads of chemical pollutants are being continuously brought in by major European rivers. This study investigated the spatial distribution of chemicals in the Ukrainian shelf (the northwestern part of the Black Sea) and their main sources. Chemical occurrence data used in the study was generated within the Joint Black Sea Surveys (JBSS), which took place in 2016 and 2017 as a part of the EU/UNDP EMBLAS II project (www.emblasproject.org). During the JBSS, seawater samples were analyzed by a non-target screening workflow using liquid chromatography high-resolution mass spectrometry (LC-HRMS). Open-source algorithms were applied to generate a combined dataset of 30,489 detected chemical signals and their intensities. Out of these, 35 compounds were tentatively identified by the application of a non-target screening identification workflow based on automated matching of their mass spectra against those in available mass spectral libraries. The dataset was used to generate images, representing spatial distribution of each of the signals. These images were then used as an input to a deep learning convolutional neural network classification model. The study resulted in the development of an open-source end-to-end workflow for the estimation of the pollution load by chemicals contributed by the two major inflowing rivers (Danube and Dnieper) and other, so far unidentified, sources. A dedicated dashboard was built to facilitate data visualization per detected signal/compound. The presented model proved to be especially useful at the prioritization of signals of unknown compounds, which is of key importance for the follow up structure elucidation efforts of bulky non-target screening data. The deep learning approach for peak prioritization of unknown chemicals in the environment has been used for the first time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伯劳发布了新的文献求助10
36秒前
neversay4ever完成签到 ,获得积分10
44秒前
计划完成签到,获得积分10
56秒前
dalei001完成签到 ,获得积分10
1分钟前
li完成签到 ,获得积分10
1分钟前
Alisha完成签到,获得积分10
1分钟前
T723完成签到 ,获得积分10
1分钟前
桦奕兮完成签到 ,获得积分10
2分钟前
悠树里完成签到,获得积分10
2分钟前
2分钟前
飘逸剑发布了新的文献求助10
2分钟前
无极2023完成签到 ,获得积分10
2分钟前
大个应助飘逸剑采纳,获得10
2分钟前
小马甲应助飞翔的企鹅采纳,获得20
3分钟前
3分钟前
taster发布了新的文献求助10
3分钟前
情怀应助taster采纳,获得10
3分钟前
4分钟前
4分钟前
飞翔的企鹅完成签到,获得积分10
4分钟前
4分钟前
静静完成签到,获得积分10
4分钟前
勤奋流沙完成签到 ,获得积分10
5分钟前
5分钟前
要减肥的春天完成签到,获得积分10
5分钟前
yong完成签到 ,获得积分10
6分钟前
万能图书馆应助1577采纳,获得10
6分钟前
6分钟前
1577发布了新的文献求助10
6分钟前
1577完成签到,获得积分10
6分钟前
wangermazi完成签到,获得积分0
6分钟前
独特的师完成签到,获得积分10
7分钟前
7分钟前
kukudou2发布了新的文献求助10
7分钟前
7分钟前
7分钟前
独特的师发布了新的文献求助10
8分钟前
量子星尘发布了新的文献求助10
8分钟前
kukudou2完成签到,获得积分20
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5635197
求助须知:如何正确求助?哪些是违规求助? 4735116
关于积分的说明 14989861
捐赠科研通 4792883
什么是DOI,文献DOI怎么找? 2560055
邀请新用户注册赠送积分活动 1520241
关于科研通互助平台的介绍 1480364