Deep learning–based automatic segmentation of meningioma from multiparametric MRI for preoperative meningioma differentiation using radiomic features: a multicentre study

医学 神经组阅片室 分割 脑膜瘤 介入放射学 放射科 磁共振成像 人工智能 医学物理学 计算机科学 神经学 精神科
作者
Haolin Chen,Shuqi Li,Youming Zhang,Lizhi Liu,Xiaofei Lv,Yongju Yi,Guangying Ruan,Chao Ke,Yanqiu Feng
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (10): 7248-7259 被引量:23
标识
DOI:10.1007/s00330-022-08749-9
摘要

Develop and evaluate a deep learning-based automatic meningioma segmentation method for preoperative meningioma differentiation using radiomic features.A retrospective multicentre inclusion of MR examinations (T1/T2-weighted and contrast-enhanced T1-weighted imaging) was conducted. Data from centre 1 were allocated to training (n = 307, age = 50.94 ± 11.51) and internal testing (n = 238, age = 50.70 ± 12.72) cohorts, and data from centre 2 external testing cohort (n = 64, age = 48.45 ± 13.59). A modified attention U-Net was trained for meningioma segmentation. Segmentation accuracy was evaluated by five quantitative metrics. The agreement between radiomic features from manual and automatic segmentations was assessed using intra class correlation coefficient (ICC). After univariate and minimum-redundancy-maximum-relevance feature selection, L1-regularized logistic regression models for differentiating between low-grade (I) and high-grade (II and III) meningiomas were separately constructed using manual and automatic segmentations; their performances were evaluated using ROC analysis.Dice of meningioma segmentation for the internal testing cohort were 0.94 ± 0.04 and 0.91 ± 0.05 for tumour volumes in contrast-enhanced T1-weighted and T2-weighted images, respectively; those for the external testing cohort were 0.90 ± 0.07 and 0.88 ± 0.07. Features extracted using manual and automatic segmentations agreed well, for both the internal (ICC = 0.94, interquartile range: 0.88-0.97) and external (ICC = 0.90, interquartile range: 0.78-70.96) testing cohorts. AUC of radiomic model with automatic segmentation was comparable with that of the model with manual segmentation for both the internal (0.95 vs. 0.93, p = 0.176) and external (0.88 vs. 0.91, p = 0.419) testing cohorts.The developed deep learning-based segmentation method enables automatic and accurate extraction of meningioma from multiparametric MR images and can help deploy radiomics for preoperative meningioma differentiation in clinical practice.• A deep learning-based method was developed for automatic segmentation of meningioma from multiparametric MR images. • The automatic segmentation method enabled accurate extraction of meningiomas and yielded radiomic features that were highly consistent with those that were obtained using manual segmentation. • High-grade meningiomas were preoperatively differentiated from low-grade meningiomas using a radiomic model constructed on features from automatic segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ly完成签到,获得积分10
2秒前
Hello应助科研通管家采纳,获得10
3秒前
余味应助科研通管家采纳,获得10
3秒前
大力衫完成签到,获得积分10
4秒前
5秒前
6秒前
勤恳书包完成签到,获得积分10
9秒前
机灵雨发布了新的文献求助10
11秒前
15秒前
熄熄完成签到 ,获得积分10
17秒前
跳跃的不二完成签到 ,获得积分10
18秒前
余吉诃德发布了新的文献求助10
19秒前
黄花完成签到 ,获得积分10
20秒前
胖胖橘完成签到 ,获得积分10
23秒前
严念桃完成签到,获得积分10
23秒前
健壮的凝冬完成签到 ,获得积分10
26秒前
彩色半烟完成签到,获得积分10
26秒前
你好完成签到 ,获得积分10
27秒前
氟锑酸完成签到 ,获得积分10
28秒前
Lj完成签到,获得积分10
29秒前
伶俐耳机完成签到 ,获得积分10
30秒前
方方完成签到 ,获得积分10
34秒前
我就想看看文献完成签到 ,获得积分10
34秒前
余吉诃德完成签到,获得积分10
37秒前
Joanne完成签到 ,获得积分10
38秒前
zhizhi完成签到 ,获得积分10
39秒前
AU完成签到 ,获得积分10
41秒前
我思故我在完成签到,获得积分0
41秒前
岂有此李完成签到,获得积分10
43秒前
江幻天完成签到,获得积分10
44秒前
www完成签到 ,获得积分10
45秒前
安静的芝麻完成签到,获得积分10
48秒前
50秒前
连糜完成签到 ,获得积分10
58秒前
酷酷的涵蕾完成签到 ,获得积分10
58秒前
59秒前
qausyh完成签到,获得积分10
1分钟前
李佳倩完成签到 ,获得积分10
1分钟前
帆帆帆完成签到 ,获得积分10
1分钟前
Li发布了新的文献求助10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784840
求助须知:如何正确求助?哪些是违规求助? 3330107
关于积分的说明 10244337
捐赠科研通 3045477
什么是DOI,文献DOI怎么找? 1671691
邀请新用户注册赠送积分活动 800613
科研通“疑难数据库(出版商)”最低求助积分说明 759557