Integrating Person-Centered and Variable-Centered Analyses: Growth Mixture Modeling With Latent Trajectory Classes

潜在类模型 范畴变量 潜变量 潜变量模型 潜在增长模型 变量(数学) 混合模型 弹道 计算机科学 计量经济学 地方独立性 结构方程建模 心理学 机器学习 人工智能 数学 数学分析 物理 天文
作者
Bengt Muth n,Linda K. Muth n
出处
期刊:Alcoholism: Clinical and Experimental Research [Wiley]
卷期号:24 (6): 882-891 被引量:108
标识
DOI:10.1097/00000374-200006000-00020
摘要

Background: Many alcohol research questions require methods that take a person-centered approach because the interest is in finding heterogeneous groups of individuals, such as those who are susceptible to alcohol dependence and those who are not. A person-centered focus also is useful with longitudinal data to represent heterogeneity in developmental trajectories. In alcohol, drug, and mental health research the recognition of heterogeneity has led to theories of multiple developmental pathways. Methods: This paper gives a brief overview of new methods that integrate variable- and person-centered analyses. Methods discussed include latent class analysis, latent transition analysis, latent class growth analysis, growth mixture modeling, and general growth mixture modeling. These methods are presented in a general latent variable modeling framework that expands traditional latent variable modeling by including not only continuous latent variables but also categorical latent variables. Results: Four examples that use the National Longitudinal Survey of Youth (NLSY) data are presented to illustrate latent class analysis, latent class growth analysis, growth mixture modeling, and general growth mixture modeling. Latent class analysis of antisocial behavior found four classes. Four heavy drinking trajectory classes were found. The relationship between the latent classes and background variables and consequences was studied. Conclusions: Person-centered and variable-centered analyses typically have been seen as different activities that use different types of models and software. This paper gives a brief overview of new methods that integrate variable- and person-centered analyses. The general framework makes it possible to combine these models and to study new models serving as a stimulus for asking research questions that have both person- and variable-centered aspects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
落寞白曼完成签到,获得积分10
1秒前
专注的水壶完成签到 ,获得积分10
1秒前
1秒前
asdf应助热米莱采纳,获得10
1秒前
Ava应助柚子采纳,获得10
1秒前
炖地瓜完成签到 ,获得积分10
1秒前
sunianjinshi完成签到,获得积分10
1秒前
1秒前
炙热鹏飞发布了新的文献求助30
2秒前
科目三应助zhen采纳,获得10
2秒前
小伙子完成签到,获得积分10
2秒前
元宝爱吃薯片完成签到,获得积分10
2秒前
凯旋预言完成签到,获得积分10
2秒前
chaosyw完成签到,获得积分10
2秒前
RJL发布了新的文献求助10
2秒前
拉长的靖雁完成签到,获得积分10
2秒前
川Q邓紫棋完成签到 ,获得积分10
3秒前
CipherSage应助亦v采纳,获得50
4秒前
CA完成签到,获得积分10
4秒前
Y1311完成签到,获得积分10
4秒前
怕孤独的幻竹完成签到,获得积分10
4秒前
葛航完成签到,获得积分10
4秒前
顺利的妖妖完成签到 ,获得积分10
4秒前
Ch完成签到 ,获得积分10
4秒前
lovepepsi88完成签到,获得积分10
4秒前
4秒前
5秒前
风吹半夏完成签到,获得积分10
5秒前
篮球完成签到,获得积分10
5秒前
5秒前
不知道完成签到,获得积分10
5秒前
Bizibili完成签到,获得积分10
5秒前
健忘惜海完成签到,获得积分10
5秒前
特独斩完成签到,获得积分10
5秒前
刘笑完成签到 ,获得积分10
5秒前
顾矜应助佚名采纳,获得10
6秒前
科研通AI6应助AVA采纳,获得10
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5510395
求助须知:如何正确求助?哪些是违规求助? 4605112
关于积分的说明 14492658
捐赠科研通 4540256
什么是DOI,文献DOI怎么找? 2487920
邀请新用户注册赠送积分活动 1470085
关于科研通互助平台的介绍 1442615