Deep Learning-Based Classification of Hepatocellular Nodular Lesions on Whole-Slide Histopathologic Images

肝细胞癌 医学 活检 肝细胞腺瘤 接收机工作特性 肝硬化 放射科 病理 人工智能 内科学 计算机科学
作者
Na Cheng,Yong Ren,Jing Zhou,Yiwang Zhang,Deyu Wang,Xiaofang Zhang,Bing Chen,Fang Liu,Jin Lv,Qinghua Cao,Sijin Chen,Hong Du,Dayang Hui,Zijin Weng,Qiong Liang,Bojin Su,Lu-Ying Tang,Lanqing Han,Jianning Chen,Chun‐Kui Shao
出处
期刊:Gastroenterology [Elsevier]
卷期号:162 (7): 1948-1961.e7 被引量:115
标识
DOI:10.1053/j.gastro.2022.02.025
摘要

Hepatocellular nodular lesions (HNLs) constitute a heterogeneous group of disorders. Differential diagnosis among these lesions, especially high-grade dysplastic nodules (HGDNs) and well-differentiated hepatocellular carcinoma (WD-HCC), can be challenging, let alone biopsy specimens. We aimed to develop a deep learning system to solve these puzzles, improving the histopathologic diagnosis of HNLs (WD-HCC, HGDN, low-grade DN, focal nodular hyperplasia, hepatocellular adenoma), and background tissues (nodular cirrhosis, normal liver tissue).The samples consisting of surgical and biopsy specimens were collected from 6 hospitals. Each specimen was reviewed by 2 to 3 subspecialists. Four deep neural networks (ResNet50, InceptionV3, Xception, and the Ensemble) were used. Their performances were evaluated by confusion matrix, receiver operating characteristic curve, classification map, and heat map. The predictive efficiency of the optimal model was further verified by comparing with that of 9 pathologists.We obtained 213,280 patches from 1115 whole-slide images of 738 patients. An optimal model was finally chosen based on F1 score and area under the curve value, named hepatocellular-nodular artificial intelligence model (HnAIM), with the overall 7-category area under the curve of 0.935 in the independent external validation cohort. For biopsy specimens, the agreement rate with subspecialists' majority opinion was higher for HnAIM than 9 pathologists on both patch level and whole-slide images level.We first developed a deep learning diagnostic model for HNLs, which performed well and contributed to enhancing the diagnosis rate of early HCC and risk stratification of patients with HNLs. Furthermore, HnAIM had significant advantages in patch-level recognition, with important diagnostic implications for fragmentary or scarce biopsy specimens.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助比Zn采纳,获得10
2秒前
2秒前
猪猪hero发布了新的文献求助10
6秒前
wangahu完成签到,获得积分10
9秒前
10秒前
10秒前
ll发布了新的文献求助10
12秒前
xiaoxi完成签到,获得积分10
13秒前
务实的哈密瓜完成签到,获得积分10
14秒前
比Zn发布了新的文献求助10
15秒前
李健应助高大的画板采纳,获得10
15秒前
16秒前
情怀应助drosophila406采纳,获得10
16秒前
Jasper应助粱夏烟采纳,获得10
17秒前
双马尾小男生完成签到,获得积分10
21秒前
Xi关注了科研通微信公众号
22秒前
比Zn完成签到,获得积分10
23秒前
搜集达人应助jewelliang采纳,获得10
24秒前
展锋完成签到,获得积分10
25秒前
27秒前
Owen应助jjkml采纳,获得10
28秒前
28秒前
29秒前
双马尾小男生2完成签到,获得积分10
29秒前
茶蛋完成签到 ,获得积分10
30秒前
32秒前
心静如水发布了新的文献求助10
32秒前
wxn完成签到 ,获得积分10
32秒前
嘎嘎猛发布了新的文献求助10
33秒前
leemonster发布了新的文献求助10
33秒前
粱夏烟发布了新的文献求助10
34秒前
蓝天发布了新的文献求助10
35秒前
36秒前
小马艾学习完成签到,获得积分10
39秒前
mm完成签到 ,获得积分10
41秒前
靓仔xxx完成签到 ,获得积分10
41秒前
41秒前
木子苏发布了新的文献求助10
42秒前
缥缈的觅风完成签到 ,获得积分10
43秒前
wz完成签到,获得积分10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5877371
求助须知:如何正确求助?哪些是违规求助? 6542270
关于积分的说明 15681302
捐赠科研通 4996048
什么是DOI,文献DOI怎么找? 2692496
邀请新用户注册赠送积分活动 1634600
关于科研通互助平台的介绍 1592240