Deep Learning-Based Classification of Hepatocellular Nodular Lesions on Whole-Slide Histopathologic Images

肝细胞癌 医学 活检 肝细胞腺瘤 接收机工作特性 肝硬化 放射科 病理 人工智能 内科学 计算机科学
作者
Na Cheng,Yong Ren,Jing Zhou,Yiwang Zhang,Deyu Wang,Xiaofang Zhang,Bing Chen,Fang Liu,Jin Lv,Qinghua Cao,Sijin Chen,Hong Du,Dayang Hui,Zijin Weng,Qiong Liang,Bojin Su,Lu-Ying Tang,Lanqing Han,Jianning Chen,Chun‐Kui Shao
出处
期刊:Gastroenterology [Elsevier BV]
卷期号:162 (7): 1948-1961.e7 被引量:66
标识
DOI:10.1053/j.gastro.2022.02.025
摘要

Hepatocellular nodular lesions (HNLs) constitute a heterogeneous group of disorders. Differential diagnosis among these lesions, especially high-grade dysplastic nodules (HGDNs) and well-differentiated hepatocellular carcinoma (WD-HCC), can be challenging, let alone biopsy specimens. We aimed to develop a deep learning system to solve these puzzles, improving the histopathologic diagnosis of HNLs (WD-HCC, HGDN, low-grade DN, focal nodular hyperplasia, hepatocellular adenoma), and background tissues (nodular cirrhosis, normal liver tissue).The samples consisting of surgical and biopsy specimens were collected from 6 hospitals. Each specimen was reviewed by 2 to 3 subspecialists. Four deep neural networks (ResNet50, InceptionV3, Xception, and the Ensemble) were used. Their performances were evaluated by confusion matrix, receiver operating characteristic curve, classification map, and heat map. The predictive efficiency of the optimal model was further verified by comparing with that of 9 pathologists.We obtained 213,280 patches from 1115 whole-slide images of 738 patients. An optimal model was finally chosen based on F1 score and area under the curve value, named hepatocellular-nodular artificial intelligence model (HnAIM), with the overall 7-category area under the curve of 0.935 in the independent external validation cohort. For biopsy specimens, the agreement rate with subspecialists' majority opinion was higher for HnAIM than 9 pathologists on both patch level and whole-slide images level.We first developed a deep learning diagnostic model for HNLs, which performed well and contributed to enhancing the diagnosis rate of early HCC and risk stratification of patients with HNLs. Furthermore, HnAIM had significant advantages in patch-level recognition, with important diagnostic implications for fragmentary or scarce biopsy specimens.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yuki完成签到,获得积分10
1秒前
Phonyeee完成签到,获得积分10
1秒前
1秒前
66647发布了新的文献求助20
1秒前
甜崽发布了新的文献求助30
2秒前
小幸运完成签到,获得积分10
2秒前
迅速的甜瓜完成签到 ,获得积分20
3秒前
cjc完成签到 ,获得积分20
3秒前
4秒前
FAYE完成签到,获得积分10
4秒前
君临完成签到,获得积分10
4秒前
研友_LN3xyn完成签到,获得积分10
5秒前
5秒前
天天快乐应助神的女人采纳,获得10
5秒前
许诺完成签到,获得积分10
5秒前
英姑应助吕姆克的月壤采纳,获得10
5秒前
花花发布了新的文献求助10
6秒前
豆浆油条完成签到 ,获得积分10
6秒前
九号球完成签到,获得积分10
7秒前
向日葵完成签到,获得积分10
7秒前
7秒前
奋斗的大米完成签到,获得积分10
7秒前
111完成签到,获得积分10
7秒前
橙子发布了新的文献求助10
9秒前
yang完成签到 ,获得积分10
9秒前
搜集达人应助学术蟑螂采纳,获得10
9秒前
乐开欣完成签到,获得积分10
9秒前
9秒前
66647完成签到,获得积分10
10秒前
Hello应助Baneyhua采纳,获得10
10秒前
10秒前
早睡的林完成签到,获得积分10
10秒前
猴皮冻发布了新的文献求助10
10秒前
10秒前
萨尔莫斯完成签到,获得积分10
10秒前
笑点低的凝阳完成签到,获得积分10
12秒前
甜崽完成签到,获得积分10
12秒前
纯真的白开水完成签到 ,获得积分10
12秒前
xiaoting完成签到,获得积分10
12秒前
在水一方应助xiaoyezi123采纳,获得10
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808375
求助须知:如何正确求助?哪些是违规求助? 3353104
关于积分的说明 10363207
捐赠科研通 3069307
什么是DOI,文献DOI怎么找? 1685461
邀请新用户注册赠送积分活动 810551
科研通“疑难数据库(出版商)”最低求助积分说明 766193