重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Stability prediction of a natural and man-made slope using various machine learning algorithms

残余物 人工神经网络 支持向量机 随机森林 Boosting(机器学习) 算法 理论(学习稳定性) 极限学习机 机器学习 计算机科学 人工智能 覆盖层 均方误差 边坡稳定性 梯度升压 数学 统计 工程类 岩土工程
作者
Dhruva Karir,Arunava Ray,Ashutosh Kumar Bharati,Utkarsh Chaturvedi,Rajesh Rai,Manoj Khandelwal
出处
期刊:Transportation geotechnics [Elsevier]
卷期号:34: 100745-100745 被引量:60
标识
DOI:10.1016/j.trgeo.2022.100745
摘要

In this paper, an attempt has been made to implement various machine learning techniques to predict the factor of safety of a natural residual soil slope and a man-made overburden mine dump slope using several physical and geometrical parameters of the respective slopes. As the stability predictions of a slope, whether natural or man-made, is very complex and time-consuming, several machine learning-based algorithms like Support Vector Regressor, Artificial Neural Network, Random Forest, Gradient Boosting and Extreme Gradient Boost were selected for modelling. The results derived from the models were compared with those achieved from numerical analysis. Moreover, various performance indices such as coefficient of determination, variance account for, root mean square error, learning rate and residual error were employed to evaluate the predictive performance of the developed models. The results indicate an excellent prediction performance and ease of interpretation of tree-based algorithms like Random Forest, Gradient Boosting and Extreme Gradient Boost than linear models like Support Vector Regressor and Neural Network-based algorithm for both the slope types. The Support Vector Regressor has the least while Extreme Gradient Boost has the highest predictive performance. Also, it was observed that the efficiency of various machine learning models to predict the factor of safety was found to be superior in the case of man-made dump slope than natural residual soil slope.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lingkoi完成签到,获得积分10
刚刚
顺利剑成关注了科研通微信公众号
刚刚
有缘人发布了新的文献求助10
刚刚
lulu完成签到,获得积分10
1秒前
1秒前
研友_nEoEy8发布了新的文献求助30
1秒前
隐形曼青应助痛失饭搭子采纳,获得10
1秒前
1秒前
内向忆南发布了新的文献求助10
1秒前
陈梦鼠完成签到,获得积分10
1秒前
2秒前
1111111发布了新的文献求助10
3秒前
3秒前
3秒前
研狗发布了新的文献求助20
4秒前
海上星发布了新的文献求助10
4秒前
5秒前
wch666发布了新的文献求助10
5秒前
深情安青应助阿薛采纳,获得10
7秒前
小二郎应助Ap采纳,获得10
7秒前
sw98318发布了新的文献求助10
7秒前
orixero应助简单采纳,获得10
7秒前
星辰大海应助风中可仁采纳,获得10
7秒前
雪白初彤关注了科研通微信公众号
8秒前
Ava应助任性映秋采纳,获得10
8秒前
Songcha发布了新的文献求助10
8秒前
9秒前
9秒前
天天快乐应助纯真的寒凡采纳,获得10
9秒前
FashionBoy应助虫贝采纳,获得10
10秒前
CQJ关闭了CQJ文献求助
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
朴实雨泽完成签到 ,获得积分10
12秒前
爆米花应助郁金香采纳,获得10
12秒前
南宫硕完成签到 ,获得积分10
12秒前
共享精神应助1111111采纳,获得10
12秒前
咿呀咿呀哟完成签到,获得积分10
12秒前
12秒前
石会发发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467287
求助须知:如何正确求助?哪些是违规求助? 4571004
关于积分的说明 14328036
捐赠科研通 4497554
什么是DOI,文献DOI怎么找? 2464009
邀请新用户注册赠送积分活动 1452857
关于科研通互助平台的介绍 1427654