Synthesis and characterization of waste polyethylene reinforced modified castor oil‐based polyester biocomposite

生物复合材料 材料科学 蓖麻油 化学工程 热重分析 响应面法 高密度聚乙烯 复合材料 热稳定性 高分子化学 聚乙烯 有机化学 化学 复合数 色谱法 工程类
作者
Ercan Aydoğmuş,Mustafa Dağ,Zehra Gülten Yalçın,Hasan Arslanoğlu
出处
期刊:Journal of Applied Polymer Science [Wiley]
卷期号:139 (27) 被引量:21
标识
DOI:10.1002/app.52526
摘要

Abstract In this research, modified castor oil (MCO)‐based biocomposite has been synthesized and its structure is strengthened with waste polyethylene (PE) reinforcement. Both the petrochemical raw material used is reduced by 12 wt% and a new environmentally friendly biocomposite is produced using waste PE. Considering some thermophysical properties of the obtained biocomposite, experimental working conditions, and composition ratios have been optimized with response surface methodology (RSM). The chemical bond structure of the biocomposite has been investigated by Fourier transform infrared spectrophotometer, thermal decomposition behavior by thermogravimetric analysis, and surface morphology by scanning electron microscopy. According to the results obtained, the density and hardness of the biocomposite synthesized by the addition of MCO to unsaturated polyester (UP) decreases, and its thermal conductivity and thermal stability increase. The thermal decomposition kinetics of the biocomposite is also modeled with the newly improved hyperbolic function equation. The relationship between conversion rate and the temperature has been determined by the new model with a high correlation coefficient (R2 = 0.9985) and low‐error functions (SST = 0.0096, RMSE = 0.0285, χ2 = 0.0037). Effective and efficient use of MCO, UP, methyl ethyl ketone peroxide, and cobalt octoate in the production process has provided an economical and steady the biocomposite. Evaluation of experimental data with both RSM and artificial neural networks raises the reliability of the model results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乐观鑫鹏完成签到,获得积分10
2秒前
3秒前
思茶念酒完成签到 ,获得积分10
3秒前
zjy完成签到,获得积分10
3秒前
小二郎应助孤独的根号三采纳,获得10
4秒前
5秒前
贪玩的元彤完成签到,获得积分10
5秒前
英吉利25发布了新的文献求助10
7秒前
mxy发布了新的文献求助10
10秒前
斯文败类应助tfq200采纳,获得10
10秒前
Twonej应助百事菀漾漾采纳,获得10
11秒前
12秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
所所应助科研通管家采纳,获得10
13秒前
13秒前
上官若男应助科研通管家采纳,获得10
13秒前
13秒前
Ava应助科研通管家采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
14秒前
15秒前
16秒前
16秒前
18秒前
18秒前
19秒前
cccr02完成签到 ,获得积分10
23秒前
24秒前
24秒前
25秒前
28秒前
糊涂的缘分完成签到,获得积分10
29秒前
小马甲应助复杂的白萱采纳,获得10
31秒前
景阁发布了新的文献求助20
31秒前
33秒前
万能图书馆应助sdsa采纳,获得10
33秒前
叶子的叶完成签到,获得积分10
33秒前
月下荷花完成签到 ,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
A History of Rice in China 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5874370
求助须知:如何正确求助?哪些是违规求助? 6506861
关于积分的说明 15673941
捐赠科研通 4991933
什么是DOI,文献DOI怎么找? 2690874
邀请新用户注册赠送积分活动 1633369
关于科研通互助平台的介绍 1591075