代谢物
内分泌学
内科学
肥胖
苯丙氨酸
化学
生物
生物化学
医学
氨基酸
作者
Veronica L. Li,Yang He,Kévin Contrepois,Hailan Liu,Joon T. Kim,Amanda L. Wiggenhorn,Julia T. Tanzo,Alan Sheng-Hwa Tung,Xuchao Lyu,Peter‐James H. Zushin,Robert S. Jansen,Basil Michael,Kang Yong Loh,Andrew C. Yang,Christian S. Carl,Christian T. Voldstedlund,Wei Wei,Stephanie M. Terrell,Benjamin C. Moeller,Rick M. Arthur
出处
期刊:Nature
[Nature Portfolio]
日期:2022-06-15
卷期号:606 (7915): 785-790
被引量:193
标识
DOI:10.1038/s41586-022-04828-5
摘要
Exercise confers protection against obesity, type 2 diabetes and other cardiometabolic diseases1–5. However, the molecular and cellular mechanisms that mediate the metabolic benefits of physical activity remain unclear6. Here we show that exercise stimulates the production of N-lactoyl-phenylalanine (Lac-Phe), a blood-borne signalling metabolite that suppresses feeding and obesity. The biosynthesis of Lac-Phe from lactate and phenylalanine occurs in CNDP2+ cells, including macrophages, monocytes and other immune and epithelial cells localized to diverse organs. In diet-induced obese mice, pharmacological-mediated increases in Lac-Phe reduces food intake without affecting movement or energy expenditure. Chronic administration of Lac-Phe decreases adiposity and body weight and improves glucose homeostasis. Conversely, genetic ablation of Lac-Phe biosynthesis in mice increases food intake and obesity following exercise training. Last, large activity-inducible increases in circulating Lac-Phe are also observed in humans and racehorses, establishing this metabolite as a molecular effector associated with physical activity across multiple activity modalities and mammalian species. These data define a conserved exercise-inducible metabolite that controls food intake and influences systemic energy balance. A newly identified exercise-induced signalling metabolite—an amidated conjugate of lactate and phenylalanine—can reduce food intake and improve blood glucose homeostasis.
科研通智能强力驱动
Strongly Powered by AbleSci AI