Concentrated hashing with neighborhood embedding for image retrieval and classification

汉明空间 计算机科学 模式识别(心理学) 图像检索 汉明距离 散列函数 二进制代码 人工智能 通用哈希 特征哈希 汉明码 局部敏感散列 最近邻搜索 哈希表 算法 数学 二进制数 双重哈希 图像(数学) 区块代码 算术 解码方法 计算机安全
作者
Dongmei Mo,Wai Keung Wong,Xianjing Liu,Yao Ge
出处
期刊:International Journal of Machine Learning and Cybernetics [Springer Science+Business Media]
卷期号:13 (6): 1571-1587 被引量:8
标识
DOI:10.1007/s13042-021-01466-7
摘要

Hashing learning is efficient for large-scale image retrieval by using the nearest neighbor search with binary codes instead of continuous representations. With the success of deep neural networks in related tasks such as data representation, recent hashing methods based on deep learning can further improve image retrieval quality and classification accuracy. However, most existing methods are primarily designed to maximize the performance of retrieval based on linear scan of hash codes which is still time-consuming on large-scale datasets. Fortunately, Hamming space retrieval is an alternative as it is less time-consuming by retrieving data points that are within a Hamming ball with a given Hamming radius, but few works focus on that. In this paper, we propose a concentrated hashing method with neighborhood embedding (CHNE) for efficient and effective image retrieval and classification. By integrating Cauchy cross-entropy and pair-wise weighted similarity loss, CHNE can enable similar data pairs with smaller Hamming distance and dissimilar data pairs with larger Hamming distance. In addition, existing hashing methods are usually designed for retrieval, thus the performance of classification using the binary codes is not guaranteed. To tackle this problem, we jointly minimize the regression quantization and neighborhood structure reconstruction errors in the loss function to improve the classification accuracy. The proposed end-to-end deep hashing method can be optimized by back-propagation in a standard manner. Experimental results on several datasets demonstrate that the proposed method can improve the performance of retrieval and classification. Due to its generality, the proposed method is expected to be useful for image retrieval and classification in broader areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南宫誉完成签到,获得积分10
1秒前
1秒前
麦兜发布了新的文献求助10
1秒前
orixero应助徐rl采纳,获得10
2秒前
2秒前
2秒前
小徐发布了新的文献求助10
3秒前
古德猫发布了新的文献求助10
3秒前
5秒前
5秒前
滴歪歪完成签到 ,获得积分10
6秒前
嘻嘻发布了新的文献求助10
6秒前
7秒前
leslie完成签到 ,获得积分10
8秒前
8秒前
8秒前
平常雨泽发布了新的文献求助10
10秒前
Akim应助快乐科研鼠采纳,获得10
10秒前
GYC完成签到 ,获得积分10
10秒前
asjm完成签到,获得积分10
11秒前
11秒前
汉堡包应助小肆采纳,获得10
11秒前
11秒前
11秒前
阿咚发布了新的文献求助10
12秒前
帅的罪鸽认了应助seele采纳,获得10
13秒前
花生米35发布了新的文献求助10
14秒前
清尘hm发布了新的文献求助10
14秒前
mrhughas发布了新的文献求助10
15秒前
Ningxin完成签到,获得积分10
15秒前
打打应助雪子采纳,获得10
15秒前
15秒前
15秒前
闪闪天晴发布了新的文献求助10
16秒前
asjm发布了新的文献求助10
16秒前
17秒前
谨慎哈密瓜完成签到,获得积分10
18秒前
科研通AI5应助午夜煎饼采纳,获得10
18秒前
20秒前
20秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814731
求助须知:如何正确求助?哪些是违规求助? 3358869
关于积分的说明 10397908
捐赠科研通 3076241
什么是DOI,文献DOI怎么找? 1689750
邀请新用户注册赠送积分活动 813229
科研通“疑难数据库(出版商)”最低求助积分说明 767555