亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Differentiating ‘Human in the Loop’ Decision Process

计算机科学 过程(计算) 循环(图论) 人在回路中 决策过程 过程管理 人工智能 数学 业务 程序设计语言 组合数学
作者
Sarah Walsh,Karen M. Feigh
标识
DOI:10.1109/smc52423.2021.9658802
摘要

Recently, research by groups in academia, industry, and government has shifted toward the development of AI and machine learning tools to advise human decision-making in complex, dynamic problems. Within this collaborative environment, humans alone are burdened with the task of managing team strategy due to the AI-agent's use of an unrealistic model of the human-agent's decision-making process. This work investigates the use of an unsupervised machine learning method to enable AI-systems to differentiate between human decision-making strategies, enabling improved team collaboration and decision support. An interactive experiment is designed in which human-agents are subjected to a complex decision-making environment (a storm tracking interface) in which the provided visual data sources change over time. Behavioral data from the human-agent is collected, and a k-means clustering algorithm is used to identify individual decision strategies. This approach provides evidence of three distinct decision strategies which demonstrated similar degrees of success as measured by task performance. One cluster utilized a more analytic approach to decision-making, spending more time observing and interacting with each data source, while the other two clusters utilized more heuristic decision-making strategies. These findings indicate that if AI-based decision support systems utilize this approach to distinguish between the human-agent's decision strategies in real time, the AI could develop an improved "awareness" of team strategy, enabling better collaboration with human teammates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
任性凤凰发布了新的文献求助10
7秒前
Owen应助隐形的绮山采纳,获得10
9秒前
活泼人生完成签到 ,获得积分10
17秒前
FashionBoy应助任性凤凰采纳,获得30
17秒前
20秒前
24秒前
月5114完成签到 ,获得积分10
26秒前
29秒前
甜蜜发带完成签到 ,获得积分10
31秒前
烟花应助lichunxu采纳,获得10
34秒前
不能随便完成签到,获得积分10
37秒前
43秒前
熠熠发布了新的文献求助10
48秒前
51秒前
wait发布了新的文献求助10
56秒前
1分钟前
熠熠完成签到,获得积分10
1分钟前
人间理想完成签到,获得积分10
1分钟前
1分钟前
小洪俊熙完成签到,获得积分10
1分钟前
Aaron完成签到 ,获得积分0
1分钟前
HEIKU应助redbunny采纳,获得10
1分钟前
1分钟前
wait完成签到,获得积分10
1分钟前
斯文的苡完成签到,获得积分10
1分钟前
lichunxu关注了科研通微信公众号
2分钟前
小马甲应助灵巧的之瑶采纳,获得10
2分钟前
田様应助微笑雪兰采纳,获得10
2分钟前
JamesPei应助隐形的绮山采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
lichunxu发布了新的文献求助10
2分钟前
bkagyin应助灵巧的之瑶采纳,获得10
2分钟前
lsx完成签到,获得积分10
2分钟前
杨震完成签到,获得积分10
2分钟前
无花果应助执剑燃此生采纳,获得10
2分钟前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827212
求助须知:如何正确求助?哪些是违规求助? 3369573
关于积分的说明 10456454
捐赠科研通 3089256
什么是DOI,文献DOI怎么找? 1699738
邀请新用户注册赠送积分活动 817497
科研通“疑难数据库(出版商)”最低求助积分说明 770251