聚类分析
约束聚类
计算机科学
相关聚类
树冠聚类算法
人工智能
半监督学习
公制(单位)
机器学习
CURE数据聚类算法
无监督学习
概念聚类
约束(计算机辅助设计)
数据流聚类
模糊聚类
数据挖掘
监督学习
模式识别(心理学)
数学
人工神经网络
运营管理
几何学
经济
作者
Mikhail Bilenko,Sugato Basu,Raymond J. Mooney
标识
DOI:10.1145/1015330.1015360
摘要
Semi-supervised clustering employs a small amount of labeled data to aid unsupervised learning. Previous work in the area has utilized supervised data in one of two approaches: 1) constraint-based methods that guide the clustering algorithm towards a better grouping of the data, and 2) distance-function learning methods that adapt the underlying similarity metric used by the clustering algorithm. This paper provides new methods for the two approaches as well as presents a new semi-supervised clustering algorithm that integrates both of these techniques in a uniform, principled framework. Experimental results demonstrate that the unified approach produces better clusters than both individual approaches as well as previously proposed semi-supervised clustering algorithms.
科研通智能强力驱动
Strongly Powered by AbleSci AI