Molecular pathophysiology of portal hypertension

门脉高压 医学 肝硬化 病理生理学 内科学
作者
Mercedes Fernández
出处
期刊:Hepatology [Wiley]
卷期号:61 (4): 1406-1415 被引量:120
标识
DOI:10.1002/hep.27343
摘要

Over the past two decades the advances in molecular cell biology have led to significant discoveries about the pathophysiology of portal hypertension (PHT). In particular, great progress has been made in the study of the molecular and cellular mechanisms that regulate the increased intrahepatic vascular resistance (IHVR) in cirrhosis. We now know that the increased IHVR is not irreversible, but that both the structural component caused by fibrosis and the active component caused by hepatic sinusoidal constriction can be, at least partially, reversed. Indeed, it is now apparent that the activation of perisinusoidal hepatic stellate cells, which is a key event mediating the augmented IHVR, is regulated by multiple signal transduction pathways that could be potential therapeutic targets for PHT treatment. Furthermore, the complexity of the molecular physiology of PHT can also be appreciated when one considers the complex signals capable of inducing vasodilatation and hyporesponsiveness to vasoconstrictors in the splanchnic vascular bed, with several vasoactive molecules, controlled at multiple levels, working together to mediate these circulatory abnormalities. Added to the complexity is the occurrence of pathological angiogenesis during the course of disease progression, with recent emphasis given to understanding its molecular machinery and regulation. Although much remains to be learned, with the current availability of reagents and new technologies and the exchange of concepts and data among investigators, our knowledge of the molecular basis of PHT will doubtless continue to grow, accelerating the transfer of knowledge generated by basic research to clinical practice. This will hopefully permit a better future for patients with PHT. (H epatology 2015;61:1406–1415)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
英俊的铭应助蝌蚪采纳,获得10
1秒前
枫叶完成签到,获得积分10
5秒前
FashionBoy应助飘逸的白玉采纳,获得10
5秒前
6秒前
Layla发布了新的文献求助10
6秒前
隐城完成签到,获得积分10
7秒前
科研通AI2S应助多久采纳,获得10
9秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
小二郎应助YAN采纳,获得10
12秒前
13秒前
科研通AI6应助Ji12138采纳,获得10
13秒前
搜集达人应助双硫仑采纳,获得10
15秒前
跳跃飞雪发布了新的文献求助10
16秒前
完美世界应助junn采纳,获得10
18秒前
小鸭包发布了新的文献求助10
18秒前
18秒前
19秒前
21秒前
22秒前
李健应助天123采纳,获得10
23秒前
24秒前
25秒前
田様应助YAN采纳,获得10
26秒前
悠然地八音完成签到,获得积分10
26秒前
Hilda007应助daodao采纳,获得10
26秒前
27秒前
27秒前
Movg完成签到,获得积分10
28秒前
顾矜应助跳跃飞雪采纳,获得10
30秒前
30秒前
张怡博发布了新的文献求助10
31秒前
31秒前
31秒前
32秒前
32秒前
江北月完成签到,获得积分10
32秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532485
求助须知:如何正确求助?哪些是违规求助? 4621225
关于积分的说明 14577361
捐赠科研通 4561100
什么是DOI,文献DOI怎么找? 2499151
邀请新用户注册赠送积分活动 1479070
关于科研通互助平台的介绍 1450357