材料科学
纳米针
阳极
超级电容器
阴极
电解质
纳米片
纳米技术
纳米棒
功率密度
电流密度
纳米管
电极
化学工程
电化学
碳纳米管
纳米结构
工程类
物理化学
功率(物理)
物理
化学
量子力学
作者
Yang Li,Jing Xu,Tao Feng,Qiaofeng Yao,Jianping Xie,Hui Xia
标识
DOI:10.1002/adfm.201606728
摘要
High performance of electrochemical energy storage devices depends on the smart structure engineering of electrodes, including the tailored nanoarchitectures of current collectors and subtle hybridization of active materials. To improve the anode supercapacitive performance of Fe 2 O 3 for high‐voltage asymmetric supercapacitors, here, a hybrid core‐branch nanoarchitecture is proposed by integrating Fe 2 O 3 nanoneedles on ultrafine Ni nanotube arrays (NiNTAs@Fe 2 O 3 nanoneedles). The fabrication process employs a bottom‐up strategy via a modified template‐assisted method starting from ultrafine ZnO nanorod arrays, ensuring the formation of ultrafine Ni nanotube arrays with ultrathin tube walls. The novel developed NiNTAs@Fe 2 O 3 nanoneedle electrode is demonstrated to be a highly capacitive anode (418.7 F g −1 at 10 mV s −1 ), matching well with the similarly built NiNTAs@MnO 2 nanosheet cathode. Contributed by the efficient electron collection paths and short ion diffusion paths in the uniquely designed anode and cathode, the asymmetric supercapacitors exhibit an excellent maximum energy density of 34.1 Wh kg −1 at the power density of 3197.7 W kg −1 in aqueous electrolyte and 32.2 Wh kg −1 at the power density of 3199.5 W kg −1 in quasi‐solid‐state gel electrolyte.
科研通智能强力驱动
Strongly Powered by AbleSci AI