Single-cell RNA sequencing in cardiovascular development, disease and medicine

医学 核糖核酸 细胞 疾病 计算生物学 内科学 遗传学 基因 生物
作者
David T. Paik,Sang-Kyun Cho,Lei Tian,Howard Y. Chang,Joseph C. Wu
出处
期刊:Nature Reviews Cardiology [Nature Portfolio]
卷期号:17 (8): 457-473 被引量:241
标识
DOI:10.1038/s41569-020-0359-y
摘要

Advances in single-cell RNA sequencing (scRNA-seq) technologies in the past 10 years have had a transformative effect on biomedical research, enabling the profiling and analysis of the transcriptomes of single cells at unprecedented resolution and throughput. Specifically, scRNA-seq has facilitated the identification of novel or rare cell types, the analysis of single-cell trajectory construction and stem or progenitor cell differentiation, and the comparison of healthy and disease-related tissues at single-cell resolution. These applications have been critical in advances in cardiovascular research in the past decade as evidenced by the generation of cell atlases of mammalian heart and blood vessels and the elucidation of mechanisms involved in cardiovascular development and stem or progenitor cell differentiation. In this Review, we summarize the currently available scRNA-seq technologies and analytical tools and discuss the latest findings using scRNA-seq that have substantially improved our knowledge on the development of the cardiovascular system and the mechanisms underlying cardiovascular diseases. Furthermore, we examine emerging strategies that integrate multimodal single-cell platforms, focusing on future applications in cardiovascular precision medicine that use single-cell omics approaches to characterize cell-specific responses to drugs or environmental stimuli and to develop effective patient-specific therapeutics. Single-cell RNA sequencing (scRNA-seq) technologies have helped to identify rare cell populations and allowed the comparison of healthy and diseased tissues at single-cell resolution. This Review discusses the available scRNA-seq tools and summarizes the scRNA-seq findings that have contributed to our understanding of cardiovascular development and disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谨慎雪碧完成签到 ,获得积分10
1秒前
静心完成签到,获得积分10
2秒前
风秋杨完成签到 ,获得积分0
3秒前
追光少年完成签到,获得积分10
4秒前
鲁滨逊发布了新的文献求助10
5秒前
6秒前
迅速的仰完成签到,获得积分10
7秒前
Jasper应助shouyu29采纳,获得10
9秒前
不会学习的小郭完成签到 ,获得积分10
10秒前
10秒前
pp发布了新的文献求助10
11秒前
Neltharion完成签到,获得积分10
11秒前
12秒前
Leif举报小郭求助涉嫌违规
12秒前
薄荷味的soda完成签到,获得积分10
14秒前
正直的广缘完成签到 ,获得积分10
16秒前
TJJJJJ发布了新的文献求助10
16秒前
瀛瀛完成签到 ,获得积分10
16秒前
Huimin完成签到,获得积分10
16秒前
lxlcx应助Migrol采纳,获得20
17秒前
健壮的思枫完成签到,获得积分10
18秒前
18秒前
英俊的铭应助化工小蠕虫采纳,获得10
19秒前
20秒前
tuzi完成签到,获得积分10
21秒前
21秒前
hbkj完成签到,获得积分10
21秒前
21秒前
D-L@rabbit完成签到 ,获得积分10
23秒前
njzhangyanyang完成签到,获得积分10
23秒前
meng完成签到 ,获得积分10
24秒前
英姑应助pp采纳,获得10
25秒前
Echoheart完成签到,获得积分10
25秒前
扎心发布了新的文献求助30
26秒前
三寿完成签到,获得积分10
27秒前
积极的忆曼完成签到,获得积分10
27秒前
Lanny完成签到 ,获得积分10
27秒前
禾中丨小骨完成签到 ,获得积分10
27秒前
温柔的蛋挞完成签到,获得积分10
27秒前
MYZ发布了新的文献求助10
27秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837587
求助须知:如何正确求助?哪些是违规求助? 3379741
关于积分的说明 10510291
捐赠科研通 3099357
什么是DOI,文献DOI怎么找? 1707079
邀请新用户注册赠送积分活动 821427
科研通“疑难数据库(出版商)”最低求助积分说明 772615