Derivation and validation of a predictive model for advanced colorectal neoplasia in asymptomatic adults

结肠镜检查 医学 无症状的 弗雷明翰风险评分 统计的 风险评估 家族史 内科学 结直肠癌 统计 癌症 数学 疾病 计算机安全 计算机科学
作者
Thomas F. Imperiale,Patrick O. Monahan,Timothy E. Stump,David F. Ransohoff
出处
期刊:Gut [BMJ]
卷期号:70 (6): 1155-1161 被引量:18
标识
DOI:10.1136/gutjnl-2020-321698
摘要

Knowing risk for advanced colorectal neoplasia (AN) could help patients and providers choose among screening tests, improving screening efficiency and uptake. We created a risk prediction model for AN to help decide which test might be preferred, a use not considered for existing models.Average-risk 50-to-80-year olds undergoing first-time screening colonoscopy were recruited from endoscopy units in Indiana. We measured sociodemographic and physical features, medical and family history and lifestyle factors and linked these to the most advanced finding. We derived a risk equation on two-thirds of the sample and assigned points to each variable to create a risk score. Scores with comparable risks were collapsed into risk categories. The model and score were tested on the remaining sample.Among 3025 subjects in the derivation set (mean age 57.3 (6.5) years; 52% women), AN prevalence was 9.4%. The 13-variable model (c-statistic=0.77) produced three risk groups with AN risks of 1.5% (95% CI 0.72% to 2.74%), 7.06% (CI 5.89% to 8.38%) and 27.26% (CI 23.47% to 31.30%) in low-risk, intermediate-risk and high-risk groups (p value <0.001), containing 23%, 59% and 18% of subjects, respectively. In the validation set of 1475 subjects (AN prevalence of 8.4%), model performance was comparable (c-statistic=0.78), with AN risks of 2.73% (CI 1.25% to 5.11%), 5.57% (CI 4.12% to 7.34%) and 25.79% (CI 20.51% to 31.66%) in low-risk, intermediate-risk and high-risk subgroups, respectively (p<0.001), containing proportions of 23%, 59% and 18%.Among average-risk persons, this model estimates AN risk with high discrimination, identifying a lower risk subgroup that may be screened non-invasively and a higher risk subgroup for which colonoscopy may be preferred. The model could help guide patient-provider discussions of screening options, may increase screening adherence and conserve colonoscopy resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jsw76关注了科研通微信公众号
刚刚
1秒前
所所应助zuoaogui采纳,获得10
1秒前
1秒前
3秒前
4秒前
hdisyd发布了新的文献求助10
4秒前
4秒前
lin发布了新的文献求助10
6秒前
8秒前
silence发布了新的文献求助10
8秒前
帅气yumin发布了新的文献求助10
8秒前
citrus完成签到,获得积分10
8秒前
8秒前
Owen应助March3采纳,获得10
9秒前
wrong发布了新的文献求助10
10秒前
lullu发布了新的文献求助10
11秒前
和光同尘完成签到,获得积分10
11秒前
11秒前
12秒前
万能图书馆应助hdisyd采纳,获得10
12秒前
打打应助花痴的幻儿采纳,获得10
13秒前
14秒前
布布发布了新的文献求助10
14秒前
15秒前
weiyi发布了新的文献求助10
15秒前
15秒前
浮游应助科研通管家采纳,获得10
15秒前
Li发布了新的文献求助10
15秒前
15秒前
15秒前
liao应助科研通管家采纳,获得10
15秒前
李爱国应助科研通管家采纳,获得10
15秒前
xxfsx应助科研通管家采纳,获得20
15秒前
英俊的铭应助科研通管家采纳,获得10
16秒前
16秒前
xxfsx应助科研通管家采纳,获得10
16秒前
liao应助科研通管家采纳,获得10
16秒前
heavenhorse应助科研通管家采纳,获得10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469301
求助须知:如何正确求助?哪些是违规求助? 4572424
关于积分的说明 14335737
捐赠科研通 4499324
什么是DOI,文献DOI怎么找? 2465014
邀请新用户注册赠送积分活动 1453542
关于科研通互助平台的介绍 1428051