Noisy-as-Clean: Learning Self-Supervised Denoising From Corrupted Image

人工智能 降噪 计算机科学 图像去噪 模式识别(心理学) 图像处理 计算机视觉 图像(数学) 噪音(视频)
作者
Jun Xu,Yuan Huang,Ming–Ming Cheng,Li Liu,Fan Zhu,Xu Zhou,Ling Shao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 9316-9329 被引量:151
标识
DOI:10.1109/tip.2020.3026622
摘要

Supervised deep networks have achieved promisingperformance on image denoising, by learning image priors andnoise statistics on plenty pairs of noisy and clean images. Unsupervised denoising networks are trained with only noisy images. However, for an unseen corrupted image, both supervised andunsupervised networks ignore either its particular image prior, the noise statistics, or both. That is, the networks learned from external images inherently suffer from a domain gap problem: the image priors and noise statistics are very different between the training and test images. This problem becomes more clear when dealing with the signal dependent realistic noise. To circumvent this problem, in this work, we propose a novel "Noisy-As-Clean" (NAC) strategy of training self-supervised denoising networks. Specifically, the corrupted test image is directly taken as the "clean" target, while the inputs are synthetic images consisted of this corrupted image and a second and similar corruption. A simple but useful observation on our NAC is: as long as the noise is weak, it is feasible to learn a self-supervised network only with the corrupted image, approximating the optimal parameters of a supervised network learned with pairs of noisy and clean images. Experiments on synthetic and realistic noise removal demonstrate that, the DnCNN and ResNet networks trained with our self-supervised NAC strategy achieve comparable or better performance than the original ones and previous supervised/unsupervised/self-supervised networks. The code is publicly available at https://github.com/csjunxu/Noisy-As-Clean.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助中中会发光采纳,获得10
1秒前
英俊的铭应助aiya采纳,获得10
3秒前
4秒前
4秒前
孙意冉完成签到,获得积分10
5秒前
xxx7749发布了新的文献求助10
5秒前
一一一完成签到,获得积分10
7秒前
个性的振家完成签到,获得积分10
7秒前
7秒前
9秒前
ShiRz发布了新的文献求助10
10秒前
热沙来提发布了新的文献求助10
10秒前
shjyang发布了新的文献求助10
10秒前
11秒前
ZY完成签到 ,获得积分10
12秒前
杀殿完成签到 ,获得积分10
13秒前
充电宝应助pokexuejiao采纳,获得30
14秒前
十块小子发布了新的文献求助10
16秒前
17秒前
lamp完成签到 ,获得积分10
18秒前
笨笨芯举报快乐星求助涉嫌违规
20秒前
科研牛马完成签到,获得积分10
20秒前
22秒前
Zaaa完成签到 ,获得积分20
22秒前
充电宝应助Soir采纳,获得10
26秒前
27秒前
呆呆芭乐发布了新的文献求助10
29秒前
31秒前
Flanker发布了新的文献求助10
32秒前
33秒前
HZY完成签到 ,获得积分10
35秒前
走着完成签到,获得积分10
37秒前
爆米花应助科研通管家采纳,获得10
38秒前
科目三应助科研通管家采纳,获得10
38秒前
FashionBoy应助科研通管家采纳,获得10
38秒前
38秒前
子南完成签到,获得积分10
39秒前
大知闲闲发布了新的文献求助10
39秒前
Soir发布了新的文献求助10
40秒前
Flanker完成签到,获得积分10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781253
求助须知:如何正确求助?哪些是违规求助? 3326745
关于积分的说明 10228256
捐赠科研通 3041776
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799118
科研通“疑难数据库(出版商)”最低求助积分说明 758751