DeepTarget: Gross tumor and clinical target volume segmentation in esophageal cancer radiotherapy

分割 计算机科学 体积热力学 放射治疗 人工智能 食管癌 医学 数学 医学物理学 癌症 放射科 物理 量子力学 内科学
作者
Dakai Jin,Dazhou Guo,Tsung‐Ying Ho,Adam P. Harrison,Jing Xiao,Chen‐Kan Tseng,Le Lü
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:68: 101909-101909 被引量:66
标识
DOI:10.1016/j.media.2020.101909
摘要

Gross tumor volume (GTV) and clinical target volume (CTV) delineation are two critical steps in the cancer radiotherapy planning. GTV defines the primary treatment area of the gross tumor, while CTV outlines the sub-clinical malignant disease. Automatic GTV and CTV segmentation are both challenging for distinct reasons: GTV segmentation relies on the radiotherapy computed tomography (RTCT) image appearance, which suffers from poor contrast with the surrounding tissues, while CTV delineation relies on a mixture of predefined and judgement-based margins. High intra- and inter-user variability makes this a particularly difficult task. We develop tailored methods solving each task in the esophageal cancer radiotherapy, together leading to a comprehensive solution for the target contouring task. Specifically, we integrate the RTCT and positron emission tomography (PET) modalities together into a two-stream chained deep fusion framework taking advantage of both modalities to facilitate more accurate GTV segmentation. For CTV segmentation, since it is highly context-dependent—it must encompass the GTV and involved lymph nodes while also avoiding excessive exposure to the organs at risk—we formulate it as a deep contextual appearance-based problem using encoded spatial distances of these anatomical structures. This better emulates the margin- and appearance-based CTV delineation performed by oncologists. Adding to our contributions, for the GTV segmentation we propose a simple yet effective progressive semantically-nested network (PSNN) backbone that outperforms more complicated models. Our work is the first to provide a comprehensive solution for the esophageal GTV and CTV segmentation in radiotherapy planning. Extensive 4-fold cross-validation on 148 esophageal cancer patients, the largest analysis to date, was carried out for both tasks. The results demonstrate that our GTV and CTV segmentation approaches significantly improve the performance over previous state-of-the-art works, e.g., by 8.7% increases in Dice score (DSC) and 32.9mm reduction in Hausdorff distance (HD) for GTV segmentation, and by 3.4% increases in DSC and 29.4mm reduction in HD for CTV segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
makeouthill完成签到,获得积分10
1秒前
1秒前
孙行行完成签到,获得积分10
1秒前
狄百招完成签到,获得积分10
2秒前
科研小越发布了新的文献求助10
2秒前
chenchen完成签到,获得积分10
2秒前
的地方法规完成签到,获得积分20
2秒前
2秒前
3秒前
阔达的海完成签到,获得积分10
3秒前
helppppp完成签到,获得积分10
3秒前
现实的又夏完成签到,获得积分10
4秒前
浮光完成签到,获得积分10
4秒前
光亮的自行车应助lfg采纳,获得10
4秒前
5秒前
5秒前
Lucas完成签到,获得积分10
5秒前
Xia YJ完成签到,获得积分10
5秒前
asdfghjkl发布了新的文献求助10
5秒前
6秒前
callmecjh完成签到,获得积分10
6秒前
6秒前
雪白炎彬发布了新的文献求助10
6秒前
章鱼哥完成签到,获得积分10
6秒前
小鱼鱼Fish完成签到,获得积分10
7秒前
shutcm风完成签到,获得积分10
7秒前
小石猛猛冲完成签到 ,获得积分10
7秒前
quan完成签到 ,获得积分10
7秒前
小杨发布了新的文献求助10
8秒前
So完成签到 ,获得积分10
8秒前
寒星苍梧完成签到,获得积分10
8秒前
胖鲤鱼发布了新的文献求助20
9秒前
菠萝披萨完成签到,获得积分10
9秒前
科研通AI5应助机智的宝贝采纳,获得10
9秒前
禹代秋完成签到 ,获得积分10
10秒前
shutcm风发布了新的文献求助10
10秒前
pebble完成签到,获得积分10
10秒前
苻天寿发布了新的文献求助10
11秒前
11秒前
高贵的小天鹅完成签到,获得积分10
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795794
求助须知:如何正确求助?哪些是违规求助? 3340791
关于积分的说明 10302239
捐赠科研通 3057329
什么是DOI,文献DOI怎么找? 1677651
邀请新用户注册赠送积分活动 805524
科研通“疑难数据库(出版商)”最低求助积分说明 762642