已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The MRC IEU OpenGWAS data infrastructure

Python(编程语言) 计算机科学 全基因组关联研究 数据映射 元数据 生命银行 数据挖掘 数据库 生物信息学 万维网 生物 操作系统 遗传学 基因 基因型 单核苷酸多态性
作者
Ben Elsworth,Matthew Lyon,Tessa Alexander,Yi Liu,Peter Matthews,Jon Hallett,P. J. Bates,Tom Palmer,Valeriia Haberland,George Davey Smith,Jie Zheng,Philip Haycock,Tom R. Gaunt,Gibran Hemani
标识
DOI:10.1101/2020.08.10.244293
摘要

Abstract Data generated by genome-wide association studies (GWAS) are growing fast with the linkage of biobank samples to health records, and expanding capture of high-dimensional molecular phenotypes. However the utility of these efforts can only be fully realised if their complete results are collected from their heterogeneous sources and formats, harmonised and made programmatically accessible. Here we present the OpenGWAS database, an open source, open access, scalable and high-performance cloud-based data infrastructure that imports and publishes complete GWAS summary datasets and metadata for the scientific community. Our import pipeline harmonises these datasets against dbSNP and the human genome reference sequence, generates summary reports and standardises the format of results and metadata. Users can access the data via a website, an application programming interface, R and Python packages, and also as downloadable files that can be rapidly queried in high performance computing environments. OpenGWAS currently contains 126 billion genetic associations from 14,582 complete GWAS datasets representing a range of different human phenotypes and disease outcomes across different populations. We developed R and Python packages to serve as conduits between these GWAS data sources and a range of available analytical tools, enabling Mendelian randomization, genetic colocalisation analysis, fine mapping, genetic correlation and locus visualisation. OpenGWAS is freely accessible at https://gwas.mrcieu.ac.uk , and has been designed to facilitate integration with third party analytical tools.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zmy完成签到,获得积分10
1秒前
2微恙发布了新的文献求助20
1秒前
4秒前
科研通AI5应助iceice采纳,获得10
6秒前
TaoJ发布了新的文献求助10
9秒前
Boming发布了新的文献求助20
11秒前
科研通AI5应助俊逸湘采纳,获得10
11秒前
ding应助卫斯理采纳,获得10
11秒前
12秒前
100发布了新的文献求助10
13秒前
刘洋完成签到 ,获得积分10
17秒前
17秒前
hehe发布了新的文献求助10
18秒前
19秒前
情怀应助Tiam采纳,获得10
19秒前
Wang发布了新的文献求助10
22秒前
动漫大师发布了新的文献求助10
22秒前
22秒前
勤劳平彤完成签到,获得积分10
23秒前
24秒前
第七兵团司令完成签到,获得积分10
31秒前
31秒前
Azyyyy完成签到,获得积分10
32秒前
Ania99完成签到 ,获得积分10
35秒前
36秒前
36秒前
风旅关注了科研通微信公众号
37秒前
37秒前
搜集达人应助静好采纳,获得10
38秒前
38秒前
39秒前
星辰大海应助a焦采纳,获得10
40秒前
100发布了新的文献求助10
41秒前
wqq发布了新的文献求助10
42秒前
iceice发布了新的文献求助10
42秒前
42秒前
3434232发布了新的文献求助30
43秒前
bkagyin应助Wang采纳,获得10
44秒前
深情安青应助Wang采纳,获得10
45秒前
45秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784673
求助须知:如何正确求助?哪些是违规求助? 3329836
关于积分的说明 10243563
捐赠科研通 3045204
什么是DOI,文献DOI怎么找? 1671592
邀请新用户注册赠送积分活动 800480
科研通“疑难数据库(出版商)”最低求助积分说明 759416