已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Evaluation of a Machine Learning Model Based on Pretreatment Symptoms and Electroencephalographic Features to Predict Outcomes of Antidepressant Treatment in Adults With Depression

依西酞普兰 文拉法辛 抗抑郁药 重性抑郁障碍 舍曲林 随机对照试验 评定量表 医学 萧条(经济学) 精神科 内科学 心理学 心情 焦虑 经济 宏观经济学 发展心理学
作者
Pranav Rajpurkar,Jingbo Yang,Nathan Dass,Vinjai Vale,Arielle S. Keller,Jeremy Irvin,Zachary Taylor,Sanjay Basu,Andrew Y. Ng,Leanne M. Williams
出处
期刊:JAMA network open [American Medical Association]
卷期号:3 (6): e206653-e206653 被引量:70
标识
DOI:10.1001/jamanetworkopen.2020.6653
摘要

Importance

Despite the high prevalence and potential outcomes of major depressive disorder, whether and how patients will respond to antidepressant medications is not easily predicted.

Objective

To identify the extent to which a machine learning approach, using gradient-boosted decision trees, can predict acute improvement for individual depressive symptoms with antidepressants based on pretreatment symptom scores and electroencephalographic (EEG) measures.

Design, Setting, and Participants

This prognostic study analyzed data collected as part of the International Study to Predict Optimized Treatment in Depression, a randomized, prospective open-label trial to identify clinically useful predictors and moderators of response to commonly used first-line antidepressant medications. Data collection was conducted at 20 sites spanning 5 countries and including 518 adult outpatients (18-65 years of age) from primary care or specialty care practices who received a diagnosis of current major depressive disorder between December 1, 2008, and September 30, 2013. Patients were antidepressant medication naive or willing to undergo a 1-week washout period of any nonprotocol antidepressant medication. Statistical analysis was conducted from January 5 to June 30, 2019.

Exposures

Participants with major depressive disorder were randomized in a 1:1:1 ratio to undergo 8 weeks of treatment with escitalopram oxalate (n = 162), sertraline hydrochloride (n = 176), or extended-release venlafaxine hydrochloride (n = 180).

Main Outcomes and Measures

The primary objective was to predict improvement in individual symptoms, defined as the difference in score for each of the symptoms on the 21-item Hamilton Rating Scale for Depression from baseline to week 8, evaluated using the C index.

Results

The resulting data set contained 518 patients (274 women; mean [SD] age, 39.0 [12.6] years; mean [SD] 21-item Hamilton Rating Scale for Depression score improvement, 13.0 [7.0]). With the use of 5-fold cross-validation for evaluation, the machine learning model achieved C index scores of 0.8 or higher on 12 of 21 clinician-rated symptoms, with the highest C index score of 0.963 (95% CI, 0.939-1.000) for loss of insight. The importance of any single EEG feature was higher than 5% for prediction of 7 symptoms, with the most important EEG features being the absolute delta band power at the occipital electrode sites (O1, 18.8%; Oz, 6.7%) for loss of insight. Over and above the use of baseline symptom scores alone, the use of both EEG and baseline symptom features was associated with a significant increase in the C index for improvement in 4 symptoms: loss of insight (C index increase, 0.012 [95% CI, 0.001-0.020]), energy loss (C index increase, 0.035 [95% CI, 0.011-0.059]), appetite changes (C index increase, 0.017 [95% CI, 0.003-0.030]), and psychomotor retardation (C index increase, 0.020 [95% CI, 0.008-0.032]).

Conclusions and Relevance

This study suggests that machine learning may be used to identify independent associations of symptoms and EEG features to predict antidepressant-associated improvements in specific symptoms of depression. The approach should next be prospectively validated in clinical trials and settings.

Trial Registration

ClinicalTrials.gov Identifier:NCT00693849

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刻苦慕晴完成签到 ,获得积分10
2秒前
2秒前
3秒前
leaolf应助Yuan采纳,获得10
4秒前
6秒前
辅助成灾发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
9秒前
酷酷的靖完成签到,获得积分10
12秒前
tanglu发布了新的文献求助10
12秒前
GS11发布了新的文献求助10
13秒前
丘比特应助王欣瑶采纳,获得30
13秒前
hmv发布了新的文献求助10
13秒前
14秒前
CC完成签到 ,获得积分10
14秒前
领导范儿应助小净儿采纳,获得10
14秒前
不羁发布了新的文献求助10
15秒前
15秒前
jinzhou发布了新的文献求助10
16秒前
16秒前
18秒前
19秒前
左嫣娆发布了新的文献求助10
19秒前
小东西发布了新的文献求助10
19秒前
20秒前
巷陌发布了新的文献求助10
20秒前
酷波er应助王宇杰采纳,获得10
21秒前
GS11完成签到,获得积分10
22秒前
浮游应助Yuan采纳,获得10
23秒前
qsxchenq发布了新的文献求助10
25秒前
小东西完成签到,获得积分10
28秒前
端庄秋蝶完成签到 ,获得积分10
28秒前
yidi01完成签到,获得积分10
29秒前
浮游应助反方向的钟采纳,获得10
30秒前
Ava应助紧张的毛衣采纳,获得10
30秒前
31秒前
完美世界应助CornellRong采纳,获得10
31秒前
tiamr完成签到,获得积分20
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
A coordinated control system for truck cabin suspension based on model predictive control 410
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4680587
求助须知:如何正确求助?哪些是违规求助? 4056660
关于积分的说明 12543625
捐赠科研通 3751344
什么是DOI,文献DOI怎么找? 2071831
邀请新用户注册赠送积分活动 1101055
科研通“疑难数据库(出版商)”最低求助积分说明 980380