审查(临床试验)
反概率
估计员
逆概率加权
统计
加权
计算机科学
生存分析
计量经济学
数学
贝叶斯概率
医学
后验概率
放射科
作者
Sanne Willems,Anke Schat,MS van Noorden,Marta Fiocco
标识
DOI:10.1177/0962280216628900
摘要
Censored data make survival analysis more complicated because exact event times are not observed. Statistical methodology developed to account for censored observations assumes that patients’ withdrawal from a study is independent of the event of interest. However, in practice, some covariates might be associated to both lifetime and censoring mechanism, inducing dependent censoring. In this case, standard survival techniques, like Kaplan–Meier estimator, give biased results. The inverse probability censoring weighted estimator was developed to correct for bias due to dependent censoring. In this article, we explore the use of inverse probability censoring weighting methodology and describe why it is effective in removing the bias. Since implementing this method is highly time consuming and requires programming and mathematical skills, we propose a user friendly algorithm in R. Applications to a toy example and to a medical data set illustrate how the algorithm works. A simulation study was carried out to investigate the performance of the inverse probability censoring weighted estimators in situations where dependent censoring is present in the data. In the simulation process, different sample sizes, strengths of the censoring model, and percentages of censored individuals were chosen. Results show that in each scenario inverse probability censoring weighting reduces the bias induced in the traditional Kaplan–Meier approach where dependent censoring is ignored.
科研通智能强力驱动
Strongly Powered by AbleSci AI