亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MultiDTI: drug–target interaction prediction based on multi-modal representation learning to bridge the gap between new chemical entities and known heterogeneous network

异构网络 计算机科学 化学 化学空间 人工智能 机器学习 桥接(联网) 数据挖掘 交互网络 图形 药物发现 代表(政治) 理论计算机科学 生物信息学 无线网络 计算机网络 政治 基因 生物 电信 生物化学 化学 法学 无线 政治学
作者
Deshan Zhou,Zhijian Xu,Wentao Li,Xiaolan Xie,Shaoliang Peng
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:37 (23): 4485-4492 被引量:57
标识
DOI:10.1093/bioinformatics/btab473
摘要

Abstract Motivation Predicting new drug–target interactions is an important step in new drug development, understanding of its side effects and drug repositioning. Heterogeneous data sources can provide comprehensive information and different perspectives for drug–target interaction prediction. Thus, there have been many calculation methods relying on heterogeneous networks. Most of them use graph-related algorithms to characterize nodes in heterogeneous networks for predicting new drug–target interactions (DTI). However, these methods can only make predictions in known heterogeneous network datasets, and cannot support the prediction of new chemical entities outside the heterogeneous network, which hinder further drug discovery and development. Results To solve this problem, we proposed a multi-modal DTI prediction model named ‘MultiDTI’ which uses our proposed joint learning framework based on heterogeneous networks. It combines the interaction or association information of the heterogeneous network and the drug/target sequence information, and maps the drugs, targets, side effects and disease nodes in the heterogeneous network into a common space. In this way, ‘MultiDTI’ can map the new chemical entity to this learned common space based on the chemical structure of the new entity. That is, bridging the gap between new chemical entities and known heterogeneous network. Our model has strong predictive performance, and the area under the receiver operating characteristic curve of the model is 0.961 and the area under the precision recall curve is 0.947 with 10-fold cross validation. In addition, some predicted new DTIs have been confirmed by ChEMBL database. Our results indicate that ‘MultiDTI’ is a powerful and practical tool for predicting new DTI, which can promote the development of drug discovery or drug repositioning. Availability and implementation Python codes and dataset are available at https://github.com/Deshan-Zhou/MultiDTI/. Supplementary information Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助科研通管家采纳,获得10
刚刚
邵诗颖应助科研通管家采纳,获得30
刚刚
刚刚
路不平发布了新的文献求助10
1秒前
羞涩的寒松完成签到,获得积分20
4秒前
5秒前
身法马可波罗完成签到 ,获得积分10
8秒前
9秒前
duanhahaha完成签到,获得积分10
10秒前
Freedom_1996完成签到,获得积分10
11秒前
漂亮白枫发布了新的文献求助10
14秒前
15秒前
小马甲应助董二千采纳,获得10
15秒前
16秒前
柔弱藏今发布了新的文献求助10
21秒前
吐币南波万完成签到,获得积分10
25秒前
科研通AI2S应助Bin_Liu采纳,获得10
26秒前
31秒前
yyd完成签到 ,获得积分10
35秒前
JamesPei应助自然松采纳,获得30
37秒前
hawaii66完成签到 ,获得积分10
39秒前
Dream完成签到,获得积分0
45秒前
fabius0351完成签到 ,获得积分10
48秒前
小丸子完成签到,获得积分10
49秒前
花陵完成签到 ,获得积分10
49秒前
高山流水完成签到 ,获得积分10
50秒前
50秒前
1073980795完成签到,获得积分10
52秒前
Lisa发布了新的文献求助10
56秒前
1073980795发布了新的文献求助10
57秒前
59秒前
1分钟前
董二千发布了新的文献求助10
1分钟前
皮皮完成签到 ,获得积分10
1分钟前
COSMAO应助1073980795采纳,获得10
1分钟前
一勺四季完成签到 ,获得积分10
1分钟前
Cain完成签到,获得积分10
1分钟前
Cai完成签到 ,获得积分10
1分钟前
祁风完成签到 ,获得积分10
1分钟前
绝世冰淇淋完成签到 ,获得积分10
1分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
Battery Management Systems, Volume lll: Physics-Based Methods 550
Corpus Linguistics for Language Learning Research 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4135962
求助须知:如何正确求助?哪些是违规求助? 3672676
关于积分的说明 11611260
捐赠科研通 3368155
什么是DOI,文献DOI怎么找? 1850327
邀请新用户注册赠送积分活动 913753
科研通“疑难数据库(出版商)”最低求助积分说明 828910