Identification of different bran-fried Atractylodis Rhizoma and prediction of atractylodin content based on multivariate data mining combined with intelligent color recognition and near-infrared spectroscopy

麸皮 近红外光谱 鉴定(生物学) 多元统计 人工智能 模式识别(心理学) 化学 计算机科学 机器学习 物理 植物 光学 原材料 有机化学 生物
作者
Lin Lei,Chang Ke,Kunyu Xiao,Linghang Qu,Lin Xiong,Xin Zhan,Jiyuan Tu,Kang Xu,Yanju Liu
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:262: 120119-120119 被引量:22
标识
DOI:10.1016/j.saa.2021.120119
摘要

Unclear established standard of bran-fried Atractylodis Rhizoma (BFAR), a commonly used drug in Traditional Chinese Medicine (TCM), compromised its clinical efficacy. In this study, we explored the correlation between color and near-infrared spectroscopy (NIR) feature with content of atractylodin, then established a rapid recognition model for the optimal degree of processing for BFAR preparation. The results of the Pearson analysis indicated that the color values were significantly and positively correlated with atractylodin content. The back propagation artificial neural network algorithm and cluster analysis revealed the color of different BFAR could be accurately divided into three categories; subsequently, the color range for the optimal degrees of stir-frying was established as follows: R[red value (105.79–127.25)], G[green value(75.84–89.64)], B[blue value(33.33–42.73)], L[Lightness (81.26–95.09)].Using NIR, principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and cluster analysis, three types of BFAR were accurately identified. The prediction model of atractylodin content was established using partial least squares regression analysis. The R2 of the validation set was 0.9717 and the root mean square error was 0.026. In the color judgment model, the processing degree of 8 batches of BFAR from the market is inferior. According to the NIR judgment model, the processing degree of all samples from the market is inferior. In conclusion, the best fire degree of BFAR can be identified quickly and accurately based on our established model. It is a potential method for quality evaluation of Chinese Materia Medica processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
linlang发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
不倦应助Star1983采纳,获得10
3秒前
3秒前
漓汐发布了新的文献求助10
5秒前
朱云发布了新的文献求助10
5秒前
i7发布了新的文献求助10
6秒前
天润佳苑发布了新的文献求助10
6秒前
lizhiqian2024发布了新的文献求助10
7秒前
李伟峰发布了新的文献求助10
7秒前
8秒前
聪慧航空完成签到,获得积分10
9秒前
yan发布了新的文献求助10
9秒前
完美世界应助EOFG0PW采纳,获得10
9秒前
10秒前
10秒前
11秒前
12秒前
科研通AI5应助狗蛋采纳,获得30
13秒前
天润佳苑完成签到,获得积分10
14秒前
薇薇早睡早起完成签到 ,获得积分10
14秒前
tuanzi发布了新的文献求助10
14秒前
夏夜黎梦发布了新的文献求助50
15秒前
Jasper应助郑蒸日上采纳,获得10
17秒前
消炎药完成签到,获得积分10
18秒前
18秒前
linlang完成签到,获得积分10
18秒前
JIO发布了新的文献求助10
18秒前
22秒前
JIO完成签到,获得积分10
22秒前
22秒前
希望天下0贩的0应助Aaaa采纳,获得10
23秒前
23秒前
积极的安青应助冷静雨筠采纳,获得10
25秒前
科研通AI5应助侦察兵采纳,获得10
25秒前
肖恩完成签到,获得积分10
25秒前
鲤鱼奇异果完成签到,获得积分10
26秒前
狂野的问凝完成签到,获得积分20
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791034
求助须知:如何正确求助?哪些是违规求助? 3335765
关于积分的说明 10276743
捐赠科研通 3052313
什么是DOI,文献DOI怎么找? 1675100
邀请新用户注册赠送积分活动 803082
科研通“疑难数据库(出版商)”最低求助积分说明 761066