人工肌肉
执行机构
可控性
机械工程
材料科学
微观结构
管(容器)
复合材料
各向异性
计算机科学
工程类
物理
数学
人工智能
光学
应用数学
作者
Diego R Higueras-Ruiz,Michael W. Shafer,Heidi P. Feigenbaum
出处
期刊:Science robotics
[American Association for the Advancement of Science]
日期:2021-04-22
卷期号:6 (53)
被引量:59
标识
DOI:10.1126/scirobotics.abd5383
摘要
Compliant, biomimetic actuation technologies that are both efficient and powerful are necessary for robotic systems that may one day interact, augment, and potentially integrate with humans. To this end, we introduce a fluid-driven muscle-like actuator fabricated from inexpensive polymer tubes. The actuation results from a specific processing of the tubes. First, the tubes are drawn, which enhances the anisotropy in their microstructure. Then, the tubes are twisted, and these twisted tubes can be used as a torsional actuator. Last, the twisted tubes are helically coiled into linear actuators. We call these linear actuators cavatappi artificial muscles based on their resemblance to the Italian pasta. After drawing and twisting, hydraulic or pneumatic pressure applied inside the tube results in localized untwisting of the helical microstructure. This untwisting manifests as a contraction of the helical pitch for the coiled configuration. Given the hydraulic or pneumatic activation source, these devices have the potential to substantially outperform similar thermally activated actuation technologies regarding actuation bandwidth, efficiency, modeling and controllability, and practical implementation. In this work, we show that cavatappi contracts more than 50% of its initial length and exhibits mechanical contractile efficiencies near 45%. We also demonstrate that cavatappi artificial muscles can exhibit a maximum specific work and power of 0.38 kilojoules per kilogram and 1.42 kilowatts per kilogram, respectively. Continued development of this technology will likely lead to even higher performance in the future.
科研通智能强力驱动
Strongly Powered by AbleSci AI