亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A real-time table grape detection method based on improved YOLOv4-tiny network in complex background

计算机科学 卷积神经网络 人工智能 模式识别(心理学) 过程(计算) 卷积(计算机科学) 功能(生物学) 学习迁移 目标检测 集合(抽象数据类型) 一般化 人工神经网络 数学 数学分析 进化生物学 生物 程序设计语言 操作系统
作者
Huipeng Li,Changyong Li,Guibin Li,Lixin Chen
出处
期刊:Biosystems Engineering [Elsevier BV]
卷期号:212: 347-359 被引量:76
标识
DOI:10.1016/j.biosystemseng.2021.11.011
摘要

Accurate identification of table grapes is crucial to the harvesting process of the grape picking robot. This paper proposes an efficient grape detection model, YOLO-Grape, to solve the problem of unrecognition or decreased recognition accuracy caused by the complicated growth environment, shadows of branches and leaves, and overlapping grapes. To improve the network recognition accuracy, a down-sampling fusion structure is integrated into the network, and the Mish activation function is used. Meanwhile, an attention mechanism is added to the network, and the non-maximum suppression (NMS) function is replaced with the soft non-maximum suppression (Soft-NMS) function, thereby reducing the missing of predicted boxes due to overlapping grapes. Besides, the depthwise separable convolution is introduced to improve the detection speed of the network. In addition, transfer learning is used in the training process to improve the detection accuracy and generalization ability of the model. On the test data set of 700 grape images, the experimental results show that YOLO-Grape achieves an F1-score of 90.47%, a mAP of 91.08% and a detection speed of 81 frames per second. Compared with Faster-RCNN(Resnet50), SSD300, YOLOv4, and YOLOv4-tiny, the mAP of the YOLO-Grape model is increased by 1.67%, 2.28%, 0.84%, and 6.69%, respectively. The average recognition speeds of the YOLO-Grape model were 31.15, 3.38 and 6.45 times of Faster-RCNN(Resnet50), SSD300, and YOLOv4 respectively. Through four sets of comparative experiments, it is found that the proposed YOLO-Grape model achieves high recognition accuracy for occluded grapes, meeting the requirements of grape picking robots for real-time detection of multiple varieties of table grapes in complex situations. • Attention mechanism and soft-NMS function added to YOLO-grape network. • The YOLO-grape model is able to accurately identify six varieties of grapes. • YOLO-grape identifies obscured grapes with a mAP of 89.93%. • The detection speed of the YOLO-Grape model is 81 frames per second (1050Ti).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研究僧-卓发布了新的文献求助10
6秒前
科研通AI5应助强子采纳,获得10
13秒前
13秒前
研究僧-卓完成签到,获得积分20
15秒前
26秒前
Panda2022发布了新的文献求助30
29秒前
徐凤年完成签到,获得积分10
43秒前
48秒前
48秒前
科研通AI5应助科研通管家采纳,获得10
52秒前
微笑笑萍发布了新的文献求助30
53秒前
qiuzhiri完成签到,获得积分10
1分钟前
1分钟前
1分钟前
肝肝好发布了新的文献求助20
1分钟前
微笑笑萍完成签到,获得积分10
1分钟前
1分钟前
肝肝好完成签到,获得积分10
1分钟前
1分钟前
中中完成签到,获得积分10
1分钟前
强子发布了新的文献求助10
1分钟前
之道完成签到,获得积分10
1分钟前
YL完成签到 ,获得积分10
1分钟前
Alicia完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
Jason完成签到 ,获得积分10
2分钟前
2分钟前
没烦恼发布了新的文献求助10
2分钟前
2分钟前
WilliamJarvis完成签到 ,获得积分10
2分钟前
Akim应助wy采纳,获得10
2分钟前
tree完成签到,获得积分10
2分钟前
大个应助没烦恼采纳,获得10
2分钟前
2分钟前
pp‘s完成签到 ,获得积分10
2分钟前
科研通AI5应助lalalatiancai采纳,获得10
2分钟前
wy发布了新的文献求助10
2分钟前
2分钟前
2分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Towards a spatial history of contemporary art in China 400
Ecology, Socialism and the Mastery of Nature: A Reply to Reiner Grundmann 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3847640
求助须知:如何正确求助?哪些是违规求助? 3390328
关于积分的说明 10561392
捐赠科研通 3110626
什么是DOI,文献DOI怎么找? 1714431
邀请新用户注册赠送积分活动 825231
科研通“疑难数据库(出版商)”最低求助积分说明 775390