清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A panel of systemic inflammatory response biomarkers for outcome prediction in patients treated with radical cystectomy for urothelial carcinoma

医学 膀胱切除术 列线图 接收机工作特性 膀胱癌 肿瘤科 内科学 曲线下面积 生物标志物 预后变量 队列 泌尿科 癌症 生物化学 化学
作者
Victor M. Schuettfort,David D’Andrea,Fahad Quhal,Hadi Mostafaei,Ekaterina Laukhtina,Keiichiro Mori,Frederik König,Michael Rink,Mohammad Abufaraj,Pierre I. Karakiewicz,Stefano Luzzago,Morgan Rouprêt,Dmitry Enikeev,Kristin Zimmermann,Marina Deuker,Marco Moschini,Reza Sari Motlagh,Nico C. Grossmann,Satoshi Katayama,Benjamin Pradère
出处
期刊:BJUI [Wiley]
卷期号:129 (2): 182-193 被引量:26
标识
DOI:10.1111/bju.15379
摘要

To determine the predictive and prognostic value of a panel of systemic inflammatory response (SIR) biomarkers relative to established clinicopathological variables in order to improve patient selection and facilitate more efficient delivery of peri-operative systemic therapy.The preoperative serum levels of a panel of SIR biomarkers, including albumin-globulin ratio, neutrophil-lymphocyte ratio, De Ritis ratio, monocyte-lymphocyte ratio and modified Glasgow prognostic score were assessed in 4199 patients treated with radical cystectomy for clinically non-metastatic urothelial carcinoma of the bladder. Patients were randomly divided into a training and a testing cohort. A machine-learning-based variable selection approach (least absolute shrinkage and selection operator regression) was used for the fitting of several multivariable predictive and prognostic models. The outcomes of interest included prediction of upstaging to carcinoma invading bladder muscle (MIBC), lymph node involvement, pT3/4 disease, cancer-specific survival (CSS) and recurrence-free survival (RFS). The discriminatory ability of each model was either quantified by area under the receiver-operating curves or by the C-index. After validation and calibration of each model, a nomogram was created and decision-curve analysis was used to evaluate the clinical net benefit.For all outcome variables, at least one SIR biomarker was selected by the machine-learning process to be of high discriminative power during the fitting of the models. In the testing cohort, model performance evaluation for preoperative prediction of lymph node metastasis, ≥pT3 disease and upstaging to MIBC showed a 200-fold bootstrap-corrected area under the curve of 67.3%, 73% and 65.8%, respectively. For postoperative prognosis of CSS and RFS, a 200-fold bootstrap corrected C-index of 73.3% and 72.2%, respectively, was found. However, even the most predictive combinations of SIR biomarkers only marginally increased the discriminative ability of the respective model in comparison to established clinicopathological variables.While our machine-learning approach for fitting of the models with the highest discriminative ability incorporated several previously validated SIR biomarkers, these failed to improve the discriminative ability of the models to a clinically meaningful degree. While the prognostic and predictive value of such cheap and readily available biomarkers warrants further evaluation in the age of immunotherapy, additional novel biomarkers are still needed to improve risk stratification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗯嗯嗯嗯嗯完成签到 ,获得积分10
4秒前
无为完成签到 ,获得积分10
35秒前
北国雪未消完成签到 ,获得积分10
46秒前
高高的从波完成签到,获得积分10
1分钟前
1分钟前
ywzwszl发布了新的文献求助10
1分钟前
Arctic完成签到 ,获得积分10
1分钟前
晨晨完成签到 ,获得积分10
1分钟前
马登完成签到,获得积分10
1分钟前
松松完成签到 ,获得积分10
1分钟前
ahh完成签到 ,获得积分10
1分钟前
lxf_123完成签到,获得积分10
2分钟前
刻苦的新烟完成签到 ,获得积分10
2分钟前
adeno完成签到,获得积分10
2分钟前
2分钟前
adeno发布了新的文献求助10
2分钟前
YKJ完成签到 ,获得积分10
2分钟前
大侠完成签到 ,获得积分10
2分钟前
重重重飞完成签到 ,获得积分10
2分钟前
海丽完成签到 ,获得积分10
2分钟前
小丸子和zz完成签到 ,获得积分10
2分钟前
酷波er应助亚铁氰化钾采纳,获得100
2分钟前
科研通AI2S应助直率的浩阑采纳,获得10
2分钟前
平凡世界完成签到 ,获得积分10
2分钟前
亚铁氰化钾完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
lod完成签到,获得积分10
3分钟前
helen李完成签到 ,获得积分10
3分钟前
imica完成签到 ,获得积分10
3分钟前
愉快无心完成签到 ,获得积分10
3分钟前
make217完成签到 ,获得积分10
3分钟前
围城完成签到 ,获得积分10
3分钟前
风中的蜜蜂完成签到,获得积分10
3分钟前
西山菩提完成签到,获得积分10
4分钟前
swordshine完成签到,获得积分0
4分钟前
科研大师兄完成签到,获得积分10
4分钟前
缥缈的闭月完成签到,获得积分10
4分钟前
Heart_of_Stone完成签到 ,获得积分10
4分钟前
Xzx1995完成签到 ,获得积分10
4分钟前
人生何处不相逢完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4926980
求助须知:如何正确求助?哪些是违规求助? 4196414
关于积分的说明 13032740
捐赠科研通 3968924
什么是DOI,文献DOI怎么找? 2175209
邀请新用户注册赠送积分活动 1192306
关于科研通互助平台的介绍 1102850