ClawGAN: Claw connection-based generative adversarial networks for facial image translation in thermal to RGB visible light

计算机科学 人工智能 图像翻译 计算机视觉 翻译(生物学) 公制(单位) 相似性(几何) 模式识别(心理学) 图像(数学) 运营管理 生物化学 基因 信使核糖核酸 经济 化学
作者
Yi Luo,Dechang Pi,Yue Pan,Lingqiang Xie,Wen Yu,Yufei Liu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:191: 116269-116269 被引量:17
标识
DOI:10.1016/j.eswa.2021.116269
摘要

Thermal cameras work well in harsh environments, but the quality of infrared images is not as high as visible light. Thermal to visible image translation can get rid of the image modal differences caused by various spectral characteristics. Nowadays, Generative Adversarial Network (GAN) can transform the images from one domain to another domain, but the generated images are still in a single channel in case of facial thermal to visible. In this paper, we propose a claw connection-based generative adversarial networks framework named ClawGAN for the facial thermal images to RGB visible images translation. We proposed the mismatch metric (MM) to measure the mapping relationship of paired images and use template matching to reduce MM of the dataset. Based on the CycleGAN framework, the synthesized loss and the generative reconstructed loss are added to the adversarial loss and the cycle-consistency loss to form a new objective function. And a claw-connected network is invoked to replace the U-net network structure of the generator for more feature preservation. The model is judged from subjective evaluation and objective evaluation based on image quality metrics such as PSNR (Peak Signal to Noise Ratio), SSIM (Structural Similarity), FID (Fréchet inception distance), and face recognition accuracy. We divided the open datasets into bright light and dark light to research the effect of illumination. The experiments show that the proposed method has the lowest FID and the highest face recognition accuracy compared to the state-of-the-art methods. The proposed ClawGAN retains the structural features of thermal images while not only enhancing the quality of images but also effectively improving the observability of image translation results in both bright and dark light. The code is available at https://github.com/Luoyi3819/ClawGAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fourbleach完成签到 ,获得积分10
1秒前
2秒前
SciGPT应助当时明月在采纳,获得10
2秒前
Milou发布了新的文献求助10
2秒前
xixi完成签到,获得积分10
2秒前
聂亦完成签到,获得积分10
2秒前
隐形曼青应助dl采纳,获得10
3秒前
学术通zzz发布了新的文献求助10
4秒前
时尚香寒发布了新的文献求助10
4秒前
明亮夏旋完成签到,获得积分10
4秒前
科研通AI5应助失眠颜采纳,获得10
4秒前
5秒前
5秒前
aaaaa完成签到,获得积分10
6秒前
6秒前
喜悦松完成签到,获得积分10
7秒前
Lemrain发布了新的文献求助10
7秒前
7秒前
vv完成签到,获得积分10
8秒前
悠悠完成签到,获得积分10
8秒前
9秒前
bc应助零容忍采纳,获得30
9秒前
研友_V8QE78完成签到,获得积分10
9秒前
9秒前
图雄争霸完成签到 ,获得积分10
9秒前
bora完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
星落枝头发布了新的文献求助10
12秒前
12秒前
12秒前
研友_LMNawn发布了新的文献求助10
12秒前
12秒前
13秒前
Akim应助迨你个迨迨采纳,获得10
14秒前
领导范儿应助哎咦随风起采纳,获得10
14秒前
vv发布了新的文献求助10
14秒前
Orange应助小马采纳,获得10
14秒前
科研通AI5应助蒲蒲采纳,获得10
14秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817816
求助须知:如何正确求助?哪些是违规求助? 3361010
关于积分的说明 10410847
捐赠科研通 3079181
什么是DOI,文献DOI怎么找? 1691004
邀请新用户注册赠送积分活动 814290
科研通“疑难数据库(出版商)”最低求助积分说明 768075