Polymer Electrolyte Membranes for Vanadium Redox Flow Batteries: Fundamentals and Applications

电解质 储能 电池(电) 商业化 纳米技术 电化学储能 电化学能量转换 工艺工程 流动电池 材料科学 化学 电极 电化学 超级电容器 工程类 功率(物理) 物理化学 冶金 物理 法学 量子力学 生物化学 政治学
作者
Xinyi Shi,Oladapo Christopher Esan,Xiaoyu Huo,Yining Ma,Zhefei Pan,Liang An,Tianshou Zhao
出处
期刊:Progress in Energy and Combustion Science [Elsevier BV]
卷期号:85: 100926-100926 被引量:117
标识
DOI:10.1016/j.pecs.2021.100926
摘要

Electrochemical energy storage systems are considered as one of the most viable solutions to realize large-scale utilization of renewable energy. Among the various electrochemical energy storage systems, flow batteries have increasingly attracted global attention due to their flexible structural design, high efficiencies, long operating life cycle, and independently tunable power and energy storage capacity. Although promising, a number of challenges including the high cost of flow battery materials hinder the broad market penetration of flow battery technology. Polymer electrolyte membrane, as a key component in flow batteries providing pathways for charge carriers transport and preventing electrolytes crossover, takes over 25% of the entire cost of the battery system. Apparently, the membrane not only plays pivotal roles in the operation characteristics of a flow battery, but also largely influences the financial cost of the battery system. To provide insights and better understanding of membranes towards enhancing their performance and cost-effectiveness, we therefore present recent advances and research outcomes on the development of polymer electrolyte membranes as well as their applications in flow batteries, particularly all-vanadium redox flow batteries. Various aspects of polymer electrolyte membranes including functional requirements, characterization methods, materials screening and preparation strategies, transport mechanisms, and commercialization progress are presented. Finally, perspectives for future trends on research and development of polymer electrolyte membranes with relevance to flow batteries are highlighted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
whisper发布了新的文献求助10
1秒前
文静的刺猬完成签到,获得积分10
1秒前
科研通AI5应助郴欧尼采纳,获得10
2秒前
worker发布了新的文献求助10
2秒前
乐乐应助WULAVIVA采纳,获得10
3秒前
4秒前
sci发布了新的文献求助10
5秒前
5秒前
南非的猫发布了新的文献求助10
5秒前
7秒前
7秒前
典雅的乐萱完成签到,获得积分20
7秒前
ljkshr发布了新的文献求助10
8秒前
华仔应助顺心白开水采纳,获得10
9秒前
10秒前
疯狂的慕灵完成签到 ,获得积分10
10秒前
想睡觉的小笼包完成签到 ,获得积分10
11秒前
文艺百褶裙完成签到,获得积分10
11秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
华大01发布了新的文献求助10
14秒前
韩野完成签到,获得积分10
15秒前
上官若男应助胡大嘴先生采纳,获得10
20秒前
李健应助欣新采纳,获得10
22秒前
汪洋完成签到,获得积分10
23秒前
chunminli完成签到,获得积分10
23秒前
25秒前
沉静的向秋完成签到,获得积分10
26秒前
CodeCraft应助RATHER采纳,获得10
27秒前
俭朴夜香应助Mine采纳,获得10
27秒前
赘婿应助worker采纳,获得10
28秒前
28秒前
30秒前
绿洲发布了新的文献求助10
30秒前
Ocean完成签到,获得积分10
31秒前
32秒前
dai关注了科研通微信公众号
32秒前
33秒前
35秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Logical form: From GB to Minimalism 5000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1800
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 880
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4202381
求助须知:如何正确求助?哪些是违规求助? 3737105
关于积分的说明 11767396
捐赠科研通 3409472
什么是DOI,文献DOI怎么找? 1870655
邀请新用户注册赠送积分活动 926214
科研通“疑难数据库(出版商)”最低求助积分说明 836470