A Non‐Destructive Detection Method for Heavy Metal‐Contaminated Shellfish Using the CARS – LDA – KNN Model

高光谱成像 人工智能 稳健性(进化) 线性判别分析 模式识别(心理学) 贝类 污染 计算机科学 采样(信号处理) 支持向量机 一般化 训练集 图像处理 二元分类 环境科学 重金属 遥感 数据集
作者
Jian‐fang Xiong,Yao Liu,Ji Gao,Li‐qiong Lu,Wei Jiang,Quan‐hui Wang,Zhong‐yan Liu
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:48 (12)
标识
DOI:10.1111/jfpe.70236
摘要

ABSTRACT Eating shellfish contaminated by heavy metals is harmful to human health, so it is imperative to detect such contamination. In this paper, a new model for rapid and nondestructive detection of heavy metal‐contaminated shellfish, based on hyperspectral image technology and a machine learning algorithm, is proposed. First, hyperspectral images of shellfish samples are collected and the Competitive Adaptive Reweighted Sampling (CARS) algorithm is used to select wavelength variables. Then, the Linear Discriminant Analysis (LDA) algorithm is used to reduce the dimension of hyperspectral image data. Finally, the K‐nearest Neighbors (KNN) classification model is applied to classify and detect heavy metal‐contaminated shellfish. For binary classification of single heavy metal‐contaminated and healthy samples, the accuracy of the CARS–LDA–KNN model for detecting heavy metal contaminated samples exceeds 99.91%. For multi‐classification of cadmium‐, copper‐, lead‐ and zinc‐contaminated and healthy samples, the accuracy reaches 100%. Moreover, the model's performance is virtually unaffected by the number of samples or the proportion division of the training set and test set, and the model exhibits strong robustness and generalization ability. For these reasons, the CARS–LDA–KNN method was established for an accurate recognition model of shellfish contaminated by heavy metals, thus it provides a new means for rapid detection of heavy metal‐contaminated shellfish.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助中中采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
李爱国应助lemon采纳,获得10
2秒前
2秒前
李健的小迷弟应助keeee采纳,获得10
2秒前
3秒前
万能图书馆应助xuan采纳,获得10
3秒前
涛声依旧发布了新的文献求助10
3秒前
南枳完成签到 ,获得积分10
3秒前
韩小青发布了新的文献求助10
3秒前
所所应助hugh采纳,获得10
3秒前
胖虎发布了新的文献求助10
4秒前
害羞的天真完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
852应助福路采纳,获得10
5秒前
5秒前
6秒前
6秒前
6秒前
Yu发布了新的文献求助10
6秒前
牛西潼发布了新的文献求助10
6秒前
丘比特应助jojo采纳,获得10
6秒前
7秒前
舒适虔发布了新的文献求助10
7秒前
星星发布了新的文献求助10
7秒前
美满的酸奶完成签到,获得积分10
7秒前
lsc发布了新的文献求助10
8秒前
雨辰完成签到 ,获得积分10
8秒前
邱大山完成签到,获得积分10
8秒前
Owen应助愤怒的山兰采纳,获得10
8秒前
FU完成签到,获得积分10
8秒前
薛十七完成签到,获得积分10
9秒前
9秒前
bilin完成签到,获得积分10
9秒前
思源应助李秀敏采纳,获得10
9秒前
111完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653882
求助须知:如何正确求助?哪些是违规求助? 4790923
关于积分的说明 15066493
捐赠科研通 4812513
什么是DOI,文献DOI怎么找? 2574551
邀请新用户注册赠送积分活动 1530028
关于科研通互助平台的介绍 1488738