结晶度
化学
共轭体系
共价键
聚合物
结晶
无定形固体
光催化
有机半导体
纳米技术
透射电子显微镜
化学工程
结晶学
半导体
高分子化学
晶体结构
液晶
电子衍射
聚合物结晶
降级(电信)
作者
Shaik Ghouse,Ziang Guo,Yixiao Liu,David Mücke,Bowen Zhang,Lei Gao,Silvia Paasch,Yubin Fu,Lizhi Liu,Chandrashekar Naisa,Eike Brunner,M. Bonn,M. Carmen Ruiz Delgado,Junliang Sun,R. Zou,Ute Kaiser,Mingchao Wang,Xinliang Feng
标识
DOI:10.1038/s41557-025-02048-8
摘要
Abstract Vinylene-linked two-dimensional (2D) conjugated covalent organic frameworks, or 2D poly(arylene vinylene)s (2D PAVs), are promising polymer semiconductors for (opto-)electronics, photocatalysis and electrochemistry. However, conventional solvothermal synthesis often produces 2D PAVs that are poorly crystalline or difficult to access. Here we introduce a Mannich-elimination strategy that converts 8 2D imine-covalent organic frameworks into 11 highly crystalline 2D PAVs though a reversible C=C bond formation mechanism enabling precise crystallization control. This versatile approach affords robust 2D PAVs with honeycomb, square or kagome lattices, specific surface area up to ∼2,000 m 2 g −1 and lattice-mismatch tolerance up to 3.5%. High-resolution transmission electron microscopy and continuous rotation electron diffraction reveal molecular-level ordering in a 2-µm-sized triphenylbenzene-based single-crystalline 2D PAV. We demonstrate that crystallinity profoundly influences charge transport, with benzotrithiophene-based 2D PAVs exhibiting charge mobilities tenfold higher than their amorphous analogues or 2D polyimine precursors. This work establishes a general route to highly crystalline 2D conjugated polymer materials for robust applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI