已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

From injury to comeback: A systematic review of machine learning models predicting return to sport in athletes

机器学习 可解释性 人工智能 接收机工作特性 随机森林 运动员 预测建模 计算机科学 集成学习 特征选择 纳入和排除标准 系统回顾 决策树 特征(语言学) 支持向量机 学习曲线 集合预报 风险评估 统计分类 心理学 预测效度 包裹体(矿物) 毒物控制
作者
Jin Yuan,Zhuojia Li,Q. Zeng,Jun Li,Anjie WANG,Y Zhang,Fei Xu
出处
期刊:Digital health [SAGE]
卷期号:12: 20552076251408523-20552076251408523
标识
DOI:10.1177/20552076251408523
摘要

Objective This study aims to systematically review the current literature on the application of machine learning to predict return-to-sport (RTS) decisions after athletic injuries. The review focuses on identifying the types of machine learning models used, the commonly used predictive variables, and the methodological characteristics and limitations between studies in terms of design, model development, evaluation, and reporting. Method A comprehensive literature search was conducted on 1 May 2025 in three electronic databases: Web of Science, PubMed, and SPORTDiscus (EBSCO). Two independent reviewers selected the retrieved studies based on predefined inclusion and exclusion criteria. The Prediction Model Risk of Bias Assessment Tool (PROBAST) was used to assess the risk of bias in the included prognostic modeling studies. Results Of the 56 studies initially identified, 11 met the inclusion and exclusion criteria. Knee injuries were the most frequently modeled injury type for RTS decision-making (n = 4). The area under the receiver operating characteristic curve (ROC AUC) was the most commonly reported performance metric, presented in 82% of the included studies. Random Forest (RF) was the most widely used machine learning algorithm, applied in six studies (55%), and demonstrated the best predictive performance in four of them, with two studies reporting an AUC greater than 0.9. Some studies employed feature importance analysis or interpretability methods (e.g. SHAP) to identify key predictive variables. However, challenges remain in translating these models into clinical practice. Conclusions Machine learning techniques demonstrate promising potential for predicting RTS in athletes. Nevertheless, substantial heterogeneity across studies—particularly in RTS definitions, feature selection, and model development which limits the generalizability and clinical applicability of current models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大帅比完成签到 ,获得积分10
1秒前
2秒前
2秒前
无极微光应助静汉采纳,获得20
3秒前
karma0220完成签到,获得积分10
3秒前
GGBond完成签到 ,获得积分10
3秒前
5秒前
科研通AI6应助云心尧采纳,获得10
6秒前
无奈的小虾米完成签到,获得积分10
8秒前
8秒前
张志超发布了新的文献求助10
10秒前
英姑应助漂亮白云采纳,获得10
10秒前
12秒前
13秒前
13秒前
等待寄云完成签到 ,获得积分10
16秒前
baoziya完成签到,获得积分10
17秒前
18秒前
李健应助科研通管家采纳,获得10
18秒前
爆米花应助科研通管家采纳,获得10
18秒前
英姑应助科研通管家采纳,获得10
18秒前
19秒前
20秒前
Yuki发布了新的文献求助10
23秒前
23秒前
123完成签到 ,获得积分10
24秒前
26秒前
英姑应助番茄采纳,获得10
27秒前
烟花应助幸运幸福采纳,获得10
27秒前
27秒前
上官若男应助WAR708采纳,获得10
27秒前
科研通AI6应助hh采纳,获得10
28秒前
NexusExplorer应助hh采纳,获得10
28秒前
春衫发布了新的文献求助10
28秒前
28秒前
Wawoo完成签到,获得积分10
29秒前
29秒前
30秒前
君悦发布了新的文献求助10
31秒前
柴犬完成签到 ,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5616945
求助须知:如何正确求助?哪些是违规求助? 4701270
关于积分的说明 14913135
捐赠科研通 4746854
什么是DOI,文献DOI怎么找? 2549117
邀请新用户注册赠送积分活动 1512280
关于科研通互助平台的介绍 1474049