Multi-focus image fusion with a deep convolutional neural network

计算机科学 图像融合 卷积神经网络 人工智能 光学(聚焦) 深度学习 图像(数学) 领域(数学分析) 模式识别(心理学) 融合规则 计算机视觉 融合 数学 语言学 哲学 物理 光学 数学分析
作者
Yü Liu,Xun Chen,Hu Peng,Zengfu Wang
出处
期刊:Information Fusion [Elsevier]
卷期号:36: 191-207 被引量:1241
标识
DOI:10.1016/j.inffus.2016.12.001
摘要

Introduces Convolutional neural networks (CNNs) into the field of image fusion.Discusses the feasibility and superiority of CNNs used for image fusion.Proposes a state-of-the-art CNN-based multi-focus image fusion method.Exhibits the potential of CNNs for other-type image fusion issues.Puts forward some suggestions on the future study of CNN-based image fusion. As is well known, activity level measurement and fusion rule are two crucial factors in image fusion. For most existing fusion methods, either in spatial domain or in a transform domain like wavelet, the activity level measurement is essentially implemented by designing local filters to extract high-frequency details, and the calculated clarity information of different source images are then compared using some elaborately designed rules to obtain a clarity/focus map. Consequently, the focus map contains the integrated clarity information, which is of great significance to various image fusion issues, such as multi-focus image fusion, multi-modal image fusion, etc. However, in order to achieve a satisfactory fusion performance, these two tasks are usually difficult to finish. In this study, we address this problem with a deep learning approach, aiming to learn a direct mapping between source images and focus map. To this end, a deep convolutional neural network (CNN) trained by high-quality image patches and their blurred versions is adopted to encode the mapping. The main novelty of this idea is that the activity level measurement and fusion rule can be jointly generated through learning a CNN model, which overcomes the difficulty faced by the existing fusion methods. Based on the above idea, a new multi-focus image fusion method is primarily proposed in this paper. Experimental results demonstrate that the proposed method can obtain state-of-the-art fusion performance in terms of both visual quality and objective assessment. The computational speed of the proposed method using parallel computing is fast enough for practical usage. The potential of the learned CNN model for some other-type image fusion issues is also briefly exhibited in the experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
馥郁完成签到,获得积分10
1秒前
英俊的铭应助高兴的彩虹采纳,获得10
2秒前
2秒前
4秒前
糕手发布了新的文献求助10
4秒前
jiyang完成签到,获得积分10
4秒前
小沈完成签到,获得积分10
4秒前
6秒前
7秒前
Ade阿德发布了新的文献求助10
7秒前
田帅发布了新的文献求助10
7秒前
7秒前
lmh完成签到,获得积分10
7秒前
9秒前
HonamC发布了新的文献求助10
11秒前
阿柱哥发布了新的文献求助10
11秒前
Akim应助糖小白采纳,获得30
11秒前
俏皮诺言完成签到,获得积分10
12秒前
12秒前
李健的小迷弟应助fym采纳,获得10
12秒前
12秒前
wanci应助paper采纳,获得10
13秒前
tangyong发布了新的文献求助10
13秒前
小智发布了新的文献求助10
14秒前
马达完成签到 ,获得积分10
14秒前
14秒前
15秒前
LXL发布了新的文献求助10
16秒前
边伯贤完成签到 ,获得积分10
16秒前
Affenyi发布了新的文献求助10
16秒前
我是老大应助风清扬采纳,获得10
17秒前
17秒前
18完成签到,获得积分10
18秒前
19秒前
仰望发布了新的文献求助10
20秒前
21秒前
烟花应助陌上采纳,获得10
21秒前
桐桐应助小巧外套采纳,获得10
22秒前
22秒前
凯文发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5481783
求助须知:如何正确求助?哪些是违规求助? 4582732
关于积分的说明 14386753
捐赠科研通 4511532
什么是DOI,文献DOI怎么找? 2472396
邀请新用户注册赠送积分活动 1458660
关于科研通互助平台的介绍 1432181