光热治疗
纳米颗粒
共轭体系
材料科学
乙二醇
光毒性
PEG比率
生物物理学
共聚物
化学
聚合物
光化学
纳米技术
体外
有机化学
生物化学
生物
复合材料
经济
财务
作者
Raquel Palao‐Suay,Francisco M. Martín-Saavedra,María Rosa Aguilar,Clara Escudero-Duch,Sergio Martín‐Saldaña,Francisco J. Parra-Ruiz,Nathan A. Rohner,Susan N. Thomas,Nuria Vilaboa,Julio San Román
标识
DOI:10.1016/j.actbio.2017.05.028
摘要
Abstract The aim of this work was the generation of a multifunctional nanopolymeric system that incorporates IR-780 dye, a near-infrared (NIR) imaging probe that exhibits photothermal and photodynamic properties; and a derivate of α-tocopheryl succinate (α-TOS), a mitochondria-targeted anticancer compound. IR-780 was conjugated to the hydrophilic segment of copolymer PEG-b-polyMTOS, based on poly(ethylene glycol) (PEG) and a methacrylic derivative of α-tocopheryl succinate (MTOS), to generate IR-NP, self-assembled nanoparticles (NPs) in aqueous media which exhibit a hydrophilic shell and a hydrophobic core. During assembly, the hydrophobic core of IR-NP could encapsulate additional IR-780 to generate derived subspecies carrying different amount of probe (IR-NP-eIR). Evaluation of photo-inducible properties of IR-NP and IR-NP-eIR were thoroughly assessed in vitro. Developed nanotheranostic particles showed distinct fluorescence and photothermal behavior after excitation by a laser light emitting at 808 nm. Treatment of MDA-MB-453 cells with IR-NP or IR-NP-eIR resulted in an efficient internalization of the IR-780 dye, while subsequent NIR-laser irradiation led to a severe decrease in cell viability. Photocytoxicity conducted by IR-NP, which could not be attributed to the generation of lethal hyperthermia, responded to an increase in the levels of intracellular reactive oxygen species (ROS). Therefore, the fluorescence imaging and inducible phototoxicity capabilities of NPs derived from IR-780-PEG-b-polyMTOS copolymer confer high value to these nanotheranostics tools in clinical cancer research. Statement of Significance Multifunctional polymeric nanoparticles (NPs) that combine imaging and therapeutic properties are highly valuable in cancer treatment. In this paper we describe the development of NPs that are fluorescent in the near-infrared (NIR). This is important for their visualization in living tissues that present low absorption and low autofluorescence in this wavelength region (between 700 and 1000 nm). Moreover, NPs present photothermal and photodynamic properties when NIR irradiated: the NPs produce an efficient increment of temperature and increase the intracellular reactive oxygen species (ROS) when laser irradiated at 808 nm. These tuneable photoinduced properties make the NPs highly cytotoxic after NIR irradiation and provide a new tool for highly precise cancer treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI