静电纺丝
组织工程
材料科学
电流(流体)
纳米技术
生物医学工程
高分子科学
复合材料
聚合物
工程类
电气工程
作者
K. Geetha,A. Kathalingam,Hyun‐Seok Kim
摘要
ABSTRACT The need for artificial human implants has largely increased recently due to the scarcity of organ donors. Currently, lots of work is taking place in tissue‐engineered scaffolds preparation for the replacement of damaged human body parts. Biomimetic nanofibrous scaffolds can mimic the native extracellular matrix (ECM) and provide properties suitable to restore natural tissue performances for tissue regeneration in biomedical applications. The scaffolds prepared should be biocompatible with suitable properties to mimic the natural ECM. These biomimetic artificial scaffolds for human implants are actively produced using electrospun fibrous mats. Electrospinning is more advantageous for fabricating biomimicking scaffolds for tissue engineering applications. Specific functional materials can be easily incorporated with fibers using this electrospinning technique. It is an advanced, cheapest, simple, and high‐yielding technique used to produce polymeric fibers at nanoscale levels, which are very useful for face masks and biomimetic scaffolds. Recently, researchers are focusing on electrospun nanofibrous materials for various applications due to their extensive properties like high porous structure and suitable biochemical and mechanical properties. This review summarizes the details of novel polymeric or non‐polymeric materials used to fabricate nanofibrous scaffolds and its parameters optimization for the nanofibrous structure to inherit multifunctional properties of nanofibers as scaffolds for tissue engineering. The advantages of electrospun nanofibrous mats for bioinspired artificial implants are also summarized, concentrating on electrospinning materials and fabrication parameters. It also briefs the latest developments of electrospun polymeric scaffolds in tissue engineering applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI