Prediction of red tide outbreaks in inter‐connected coastal environments using time‐series hyperspectral data and transformer‐based graph convolution network

计算机科学 遥感 图形 变压器 高光谱成像 数据挖掘 拓扑(电路) 气象学 环境科学 人工智能 地理 数学 理论计算机科学 电压 物理 组合数学 量子力学
作者
Ming Xie,Ying Li,Zhichen Liu,Tao Gou
出处
期刊:Limnology and Oceanography-methods [Wiley]
标识
DOI:10.1002/lom3.10704
摘要

Abstract The accurate predictions on the red tide outbreaks in coastal regions can reduce their negative impacts on the marine environment and human life. Currently, the red tide prediction is generally accomplished by monitoring some related key factors, which are difficult to obtain on large spatial scales. Combining a transformer encoder with a graph convolution network (GCN), this study proposed an integrated model for red tide prediction that makes comprehensive use of the time‐series hyperspectral data obtained through remote sensing methods. The topological graphs are constructed based on the multi‐band spectral indices in the interconnected observation points, which are further analyzed using a GCN to obtain the topological features. After that, the temporal features of such topological graphs are extracted based on a transformer encoder, which are used for red tide prediction. The results show that the proposed model achieves reasonable predictions using the input period of 3 d before the date of red tide outbreaks, and the accuracy can reach about 92% with the input period of 5 d. The ablation experiments indicate that both the topological features obtained by the GCN and the temporal features obtained by the transformer encoder play significant roles in the prediction task of red tide outbreaks. The proposed model achieves the red tide prediction in interconnected coastal environments through the fusion of spectral‐, topological‐, and temporal features, and is expected to provide early alarms on red tide outbreaks for maritime and oceanic agencies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李玟完成签到,获得积分10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得20
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
温简言完成签到 ,获得积分10
2秒前
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
丘比特应助lxjjj采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得30
2秒前
傅家庆完成签到,获得积分10
2秒前
Xiaoxiao应助科研通管家采纳,获得20
2秒前
2秒前
xiaobai完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助150
3秒前
LinniL完成签到,获得积分10
4秒前
研友_V8RmmZ发布了新的文献求助10
5秒前
小冰完成签到,获得积分10
5秒前
姨母卿卿发布了新的文献求助10
5秒前
肉肉完成签到,获得积分10
5秒前
5秒前
wwx完成签到,获得积分10
7秒前
机灵的南蕾完成签到,获得积分10
7秒前
科研通AI5应助biubiu0417采纳,获得10
7秒前
7秒前
8秒前
FashionBoy应助清脆遥采纳,获得10
8秒前
Orange应助滑板鹿采纳,获得10
9秒前
9秒前
10秒前
HY完成签到,获得积分20
10秒前
11秒前
11秒前
12秒前
七月流火应助爱喝冰咖啡采纳,获得80
12秒前
我要瘦发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5069021
求助须知:如何正确求助?哪些是违规求助? 4290502
关于积分的说明 13367811
捐赠科研通 4110451
什么是DOI,文献DOI怎么找? 2250993
邀请新用户注册赠送积分活动 1256182
关于科研通互助平台的介绍 1188650