MB-TaylorFormer V2: Improved Multi-Branch Linear Transformer Expanded by Taylor Formula for Image Restoration

图像复原 人工智能 变压器 计算机科学 模式识别(心理学) 数学 计算机视觉 图像(数学) 图像处理 工程类 电压 电气工程
作者
Zhi Jin,Yuwei Qiu,Kaihao Zhang,Hongdong Li,Wenhan Luo
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:47 (7): 5990-6005 被引量:48
标识
DOI:10.1109/tpami.2025.3559891
摘要

Recently, Transformer networks have demonstrated outstanding performance in the field of image restoration due to the global receptive field and adaptability to input. However, the quadratic computational complexity of Softmax-attention poses a significant limitation on its extensive application in image restoration tasks, particularly for high-resolution images. To tackle this challenge, we propose a novel variant of the Transformer. This variant leverages the Taylor expansion to approximate the Softmax-attention and utilizes the concept of norm-preserving mapping to approximate the remainder of the first-order Taylor expansion, resulting in a linear computational complexity. Moreover, we introduce a multi-branch architecture featuring multi-scale patch embedding into the proposed Transformer, which has four distinct advantages: 1) various sizes of the receptive field; 2) multi-level semantic information; 3) flexible shapes of the receptive field; 4) accelerated training and inference speed. Hence, the proposed model, named the second version of Taylor formula expansion-based Transformer (for short MB-TaylorFormer V2) has the capability to concurrently process coarse-to-fine features, capture long-distance pixel interactions with limited computational cost, and improve the approximation of the Taylor expansion remainder. Experimental results across diverse image restoration benchmarks demonstrate that MB-TaylorFormer V2 achieves state-of-the-art performance in multiple image restoration tasks, such as image dehazing, deraining, desnowing, motion deblurring, and denoising, with very little computational overhead.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辛勤曲奇发布了新的文献求助30
1秒前
无辜的夏兰完成签到,获得积分10
1秒前
1秒前
2秒前
Lignin完成签到,获得积分10
2秒前
3秒前
大个应助乔钰涵采纳,获得10
3秒前
思源应助乔钰涵采纳,获得10
3秒前
无花果应助乔钰涵采纳,获得10
3秒前
慕青应助乔钰涵采纳,获得10
3秒前
丘比特应助乔钰涵采纳,获得10
3秒前
完美世界应助乔钰涵采纳,获得10
3秒前
BowieHuang应助乔钰涵采纳,获得10
4秒前
星辰大海应助乔钰涵采纳,获得10
4秒前
善学以致用应助乔钰涵采纳,获得10
4秒前
夏虫完成签到,获得积分10
4秒前
小镇青年完成签到,获得积分10
6秒前
6秒前
Lignin发布了新的文献求助10
7秒前
多情紫霜发布了新的文献求助10
7秒前
yyyyy完成签到,获得积分10
8秒前
maprang完成签到,获得积分10
8秒前
10秒前
sevenhill应助洁净的半鬼采纳,获得10
10秒前
10秒前
10秒前
隐形曼青应助早早采纳,获得10
13秒前
李健的小迷弟应助早早采纳,获得10
13秒前
12发布了新的文献求助20
13秒前
shuan完成签到,获得积分10
14秒前
科研通AI6应助柯林采纳,获得10
14秒前
寒冷冰香完成签到,获得积分10
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
16秒前
子车茗应助七QI采纳,获得30
17秒前
斯文慕山完成签到,获得积分10
18秒前
研友_VZG7GZ应助陈含章采纳,获得10
20秒前
852应助di采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5553546
求助须知:如何正确求助?哪些是违规求助? 4638065
关于积分的说明 14652063
捐赠科研通 4579957
什么是DOI,文献DOI怎么找? 2512001
邀请新用户注册赠送积分活动 1486901
关于科研通互助平台的介绍 1457772