Engineering high Pockels coefficients in thin-film strontium titanate for cryogenic quantum electro-optic applications

波克尔效应 钛酸锶 薄膜 材料科学 光电子学 量子 电光 工程物理 纳米技术 光学 物理 激光器 量子力学 核物理学
作者
Anja Ulrich,Kamal Brahim,Andries Boelen,Michiel Debaets,Conglin Sun,Yishu Huang,Sandeep Seema Saseendran,Marina Baryshnikova,Paola Favia,Thomas Nuytten,Stefanie Sergeant,Kasper Van Gasse,Bart Kuyken,Kristiaan De Greve,Clément Merckling,Christian Haffner
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2502.14349
摘要

Materials which exhibit the Pockels effect are notable for their strong electro-optic interaction and rapid response times and are therefore used extensively in classical electro-optic components for data and telecommunication applications. Yet many materials optimized for room-temperature operation see their Pockels coefficients at cryogenic temperatures significantly reduced - a major hurdle for emerging quantum technologies which have even more rigorous demands than their classical counterpart. A noted example is $\mathrm{BaTiO_3}$, which features the strongest effective Pockels coefficient at room temperature, only to see it reduced to a third (i.e. $\mathrm{r_{eff}} \approx$ 170 pm/V) at a few Kelvin. Here, we show that this behaviour is not inherent and can even be reversed: Strontium titanate ($\mathrm{SrTiO_3}$), a material normally not featuring a Pockels coefficient, can be engineered to exhibit an $\mathrm{r_{eff}}$ of 345 pm/V at cryogenic temperatures - a record value in any thin-film electro-optic material. By adjusting the stoichiometry, we can increase the Curie temperature and realise a ferroelectric phase that yields a high Pockels coefficient, yet with limited optical losses - on the order of decibels per centimetre. Our findings position $\mathrm{SrTiO_3}$ as one of the most promising materials for cryogenic quantum photonics applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
小二郎应助空白采纳,获得10
1秒前
花生发布了新的文献求助10
1秒前
欢呼平蓝完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
4秒前
思源应助石会发采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
5秒前
婷婷发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
pluto应助科研通管家采纳,获得10
7秒前
Criminology34应助科研通管家采纳,获得10
7秒前
Criminology34应助科研通管家采纳,获得30
7秒前
7秒前
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
Twonej应助科研通管家采纳,获得30
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
Twonej应助科研通管家采纳,获得30
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
脑洞疼应助迷路的虔采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728727
求助须知:如何正确求助?哪些是违规求助? 5314558
关于积分的说明 15315180
捐赠科研通 4875870
什么是DOI,文献DOI怎么找? 2619052
邀请新用户注册赠送积分活动 1568676
关于科研通互助平台的介绍 1525214