Machine learning-based radiomics analysis in enhancing CT for predicting pathological subtypes and WHO staging of thymic epithelial tumors: a multicenter study

无线电技术 病态的 癌症研究 医学 病理 肿瘤科 放射科
作者
Ruyue Zhang,Xueyi Zhang,Zheng Dou,Jiaxi Lin,Songbing Qin,Chao Xu,Yongbing Chen,Jinzhou Zhu,Jian‐Ping Wang
出处
期刊:American Journal of Cancer Research [e-Century Publishing Corporation]
卷期号:15 (5): 2375-2396
标识
DOI:10.62347/stuz8659
摘要

This study is aimed to develop predictive models for classifying thymic epithelial tumor (TET) histological subtypes (A/AB/B1, B2/B3, C) and WHO stages (I-IV) using radiomics features derived from contrast-enhanced CT scans. These models were validated on multicenter external datasets to improve preoperative diagnosis and guide treatment decisions. A total of 257 patients diagnosed with TET between January 2013 and April 2024 were retrospectively analyzed, with 181 cases from the First Affiliated Hospital of Soochow University served as the training cohort and 76 cases from the Second Affiliated Hospital used as an external test set. All patients underwent preoperative enhanced CT scans. After manual segmentation of the volume of interest (VOI), 1,038 radiomic features were extracted. Feature selection was performed using PCA and LASSO methods. Three models (clinical semantic, radiomics, and a fusion model combining both) were built using random forest algorithms. The fusion model achieved the highest performance in the external test set, with an accuracy of 0.908 and F1 score of 0.896 for histological subtype classification, and an accuracy of 0.803 and F1 score of 0.833 for WHO staging. The radiomics model shows slightly lower performance, while the clinical semantic model performs the weakest. Our findings suggest that machine learning models integrating radiomics and clinical features can effectively predict TET subtypes and stages, offering a non-invasive tool for accurate preoperative assessment with strong generalization ability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田心完成签到,获得积分10
1秒前
爆米花应助chen采纳,获得10
1秒前
李白发布了新的文献求助10
2秒前
嘻嘻完成签到 ,获得积分20
2秒前
潇洒怜梦发布了新的文献求助10
2秒前
英姑应助tmj采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
跳跃桐应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得30
3秒前
3秒前
浮游应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
4秒前
4秒前
4秒前
5秒前
6秒前
推土机爱学习完成签到 ,获得积分10
6秒前
7秒前
嘻嘻发布了新的文献求助10
7秒前
共享精神应助fan01采纳,获得10
7秒前
李健应助漂亮夏兰采纳,获得10
8秒前
冷静青文发布了新的文献求助20
8秒前
8秒前
10秒前
10秒前
季英兰发布了新的文献求助10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458397
求助须知:如何正确求助?哪些是违规求助? 4564442
关于积分的说明 14295115
捐赠科研通 4489318
什么是DOI,文献DOI怎么找? 2459006
邀请新用户注册赠送积分活动 1448831
关于科研通互助平台的介绍 1424446