Diagnosis of Irritant Dermatitis in Colorectal Cancer Postoperative Stoma Patients Using Smartphone Photographs: A Deep Learning Approach

医学 造口(药) 结直肠癌 皮肤病科 癌症 外科 内科学
作者
Xu Zhang,Wei Xu,Zheng Xu,Henry H.Y. Tong,Xuefei Jiao,Kefeng Li,Zhiwen Wang
出处
期刊:Journal of multidisciplinary healthcare [Dove Medical Press]
卷期号:Volume 18: 2215-2223
标识
DOI:10.2147/jmdh.s515644
摘要

Irritant dermatitis is a common complication among stoma patients, significantly impacting their quality of life. Early diagnosis is essential, but limited access to healthcare and poor self-management skills often delay treatment. This study aimed to assess the effectiveness of two advanced convolutional neural networks (CNNs), ConvNeXt and MobileViT, for the intelligent diagnosis of irritant dermatitis using smartphone-acquired stoma images. A retrospective observational study was conducted, collecting 825 stoma complication images from five tertiary hospitals in China. Data preprocessing techniques such as resampling and enhancement were used to prepare the dataset. The ConvNeXt and MobileViT models were trained and evaluated based on accuracy, precision, recall, and F1 scores. Optimizers and learning rates were also adjusted to assess model performance. ConvNeXt demonstrated superior performance, achieving an accuracy of 71.4%, precision of 73.6%, recall of 67.1%, and an F1 score of 70.2% with the Adam optimizer and a 0.001 learning rate. MobileViT, despite being more lightweight, did not surpass ConvNeXt, with a maximum accuracy of 64.4%. ConvNeXt excelled in diagnosing irritant dermatitis and normal stoma conditions but showed limitations in recognizing other complications. The ConvNeXt model outperformed MobileViT, indicating that advanced CNNs can effectively assist in the early diagnosis of irritant dermatitis among stoma patients. This could help alleviate the burden on healthcare resources and improve patient outcomes through accessible mobile-based diagnostic tools.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
复杂黑猫发布了新的文献求助10
1秒前
窝恁叠发布了新的文献求助10
2秒前
斯文败类应助安晓慧采纳,获得10
4秒前
6秒前
852应助轻微采纳,获得10
6秒前
复杂黑猫完成签到,获得积分10
7秒前
龙华之士完成签到,获得积分10
7秒前
7秒前
8秒前
科研通AI2S应助栗子采纳,获得10
8秒前
科研通AI2S应助安静又晴采纳,获得10
9秒前
龙华之士发布了新的文献求助10
10秒前
勇往直前完成签到,获得积分10
12秒前
科研狗完成签到,获得积分10
12秒前
行则将至发布了新的文献求助10
13秒前
13秒前
失眠的zth应助科研通管家采纳,获得10
15秒前
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
顾矜应助科研通管家采纳,获得10
15秒前
无花果应助科研通管家采纳,获得10
15秒前
香蕉觅云应助科研通管家采纳,获得30
15秒前
16秒前
16秒前
小宋应助科研通管家采纳,获得20
16秒前
核桃应助科研通管家采纳,获得10
16秒前
隐形曼青应助科研通管家采纳,获得10
16秒前
16秒前
打打应助AlinaLee采纳,获得12
16秒前
17秒前
Aran_Zhang应助勇往直前采纳,获得50
19秒前
20秒前
王特工完成签到,获得积分10
20秒前
21秒前
千帆发布了新的文献求助10
23秒前
24秒前
星辰大海应助蓝胖子采纳,获得10
24秒前
cheng完成签到 ,获得积分10
24秒前
科目三应助无辜的代梅采纳,获得10
25秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Assessing organizational change : A guide to methods, measures, and practices 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3903613
求助须知:如何正确求助?哪些是违规求助? 3448397
关于积分的说明 10852876
捐赠科研通 3173875
什么是DOI,文献DOI怎么找? 1753605
邀请新用户注册赠送积分活动 847795
科研通“疑难数据库(出版商)”最低求助积分说明 790473