亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AltGDmin: Alternating GD and Minimization for Partly-decoupled (Federated) Optimization

缩小 计算机科学 控制理论(社会学) 材料科学 万维网 人工智能 控制(管理)
作者
Namrata Vaswani
出处
期刊:Foundations and trends® in optimization [Now Publishers]
卷期号:8 (4): 333-414
标识
DOI:10.1561/2400000051
摘要

This monograph describes a novel optimization solution framework, called alternating gradient descent (GD) and minimization (AltGDmin), that is useful for many problems for which alternating minimization (AltMin) is a popular solution. AltMin is a special case of the block coordinate descent algorithm that is useful for problems in which minimization w.r.t one subset of variables keeping the other fixed is closed form or otherwise reliably solved. Denote the two blocks/subsets of the optimization variables Z by Zslow, Zfast, i.e., Z = {Zslow, Zfast}. AltGDmin is often a faster solution than AltMin for any problem for which (i) the minimization over one set of variables, Zfast, is much quicker than that over the other set, Zslow; and (ii) the cost function is differentiable w.r.t. Zslow. Often, the reason for one minimization to be quicker is that the problem is “decoupled” for Zfast and each of the decoupled problems is quick to solve. This decoupling is also what makes AltGDmin communication-efficient for federated settings. Important examples where this assumption holds include (a) low rank column-wise compressive sensing (LRCS), low rank matrix completion (LRMC), (b) their outlier-corrupted extensions such as robust PCA, robust LRCS and robust LRMC; (c) phase retrieval and its sparse and low-rank model based extensions; (d) tensor extensions of many of these problems such as tensor LRCS and tensor completion; and (e) many partly discrete problems where GD does not apply – such as clustering, unlabeled sensing, and mixed linear regression. LRCS finds important applications in multi-task representation learning and few shot learning, federated sketching, and accelerated dynamic MRI. LRMC and robust PCA find important applications in recommender systems, computer vision and video analytics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
紫熊发布了新的文献求助10
4秒前
7秒前
9秒前
14秒前
14秒前
21秒前
25秒前
linkman发布了新的文献求助10
27秒前
phd发布了新的文献求助10
30秒前
紫熊完成签到,获得积分10
45秒前
wearelulu完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
小伙子完成签到,获得积分10
1分钟前
1分钟前
lsl应助科研通管家采纳,获得50
1分钟前
2分钟前
采薇发布了新的文献求助10
2分钟前
2分钟前
2分钟前
wk123发布了新的文献求助10
3分钟前
YifanWang应助科研通管家采纳,获得30
3分钟前
在水一方应助科研通管家采纳,获得10
3分钟前
何为完成签到 ,获得积分10
5分钟前
无花果应助ARESCI采纳,获得10
5分钟前
5分钟前
采薇发布了新的文献求助10
5分钟前
lsl应助科研通管家采纳,获得10
5分钟前
lsl应助科研通管家采纳,获得10
5分钟前
lsl应助科研通管家采纳,获得10
5分钟前
lsl应助科研通管家采纳,获得10
5分钟前
lsl应助科研通管家采纳,获得10
5分钟前
aydidar发布了新的文献求助100
5分钟前
所所应助lei采纳,获得10
5分钟前
生动的煎蛋完成签到 ,获得积分10
6分钟前
drhwang完成签到,获得积分10
6分钟前
moiaoh发布了新的文献求助20
6分钟前
Wei发布了新的文献求助10
6分钟前
sxb10101应助VDC采纳,获得10
7分钟前
7分钟前
lsl应助科研通管家采纳,获得10
7分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644764
求助须知:如何正确求助?哪些是违规求助? 4765525
关于积分的说明 15025617
捐赠科研通 4803092
什么是DOI,文献DOI怎么找? 2567996
邀请新用户注册赠送积分活动 1525499
关于科研通互助平台的介绍 1485011