An immune plasma algorithm with Q-learning based pandemic management for path planning of unmanned aerial vehicles

大流行 运动规划 路径(计算) 计算机科学 无人机 航空学 航空航天工程 人工智能 2019年冠状病毒病(COVID-19) 工程类 医学 计算机网络 机器人 生物 传染病(医学专业) 疾病 病理 遗传学
作者
Selçuk Aslan,Sercan Demіrcі
出处
期刊:Egyptian Informatics Journal [Elsevier BV]
卷期号:26: 100468-100468 被引量:2
标识
DOI:10.1016/j.eij.2024.100468
摘要

The countries have experienced the tremendous potential of unmanned aerial vehicles and their military counterparts in recent years. For further improving the task performances of these autonomous vehicles, their flight paths should be determined or calculated optimally by taking into account enemy weapon systems, fuel or battery usage and some limitations about the turning, climbing or diving angles. Immune Plasma algorithm (IP algorithm or IPA) is the first intelligent optimization technique modeling the details of an infection treatment method called convalescent or immune plasma gained popularity again with the coronavirus disease and showed its promising performance for various engineering problems. In this study, Q-learning that is a reinforcement learning algorithm was integrated into the workflow of the IPA for managing some pandemic measures including lockdown, partial opening and full opening. Moreover, the treatment schema was completely changed in order to improve the search efficiency and remove the requirement of algorithm specific control parameters. The newly introduced IPA variant also named Q-learning IPA (Q-LIPA) was tested with the purpose of planning paths and a set of detailed experiments was carried out over twelve test cases of three different battlefield scenarios. The paths found by Q-LIPA were compared with the paths of well-known intelligent optimization techniques and their modifications. Comparative studies indicated that both Q-learning based pandemic measure management and specialized treatment schema positively contribute to the solving performance and help Q-LIPA to outperform its rivals for the majority of the test cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
地表飞猪完成签到,获得积分10
3秒前
huangJP完成签到,获得积分10
5秒前
自由的凌雪完成签到,获得积分10
5秒前
RussHu发布了新的文献求助20
8秒前
舒克完成签到,获得积分10
9秒前
华仔应助LY采纳,获得10
9秒前
阿然完成签到,获得积分10
13秒前
师大刘亦菲完成签到 ,获得积分10
16秒前
man完成签到 ,获得积分10
16秒前
vagabond完成签到 ,获得积分10
20秒前
DAI完成签到,获得积分10
22秒前
上官若男应助悦耳如彤采纳,获得10
23秒前
医生科学家完成签到 ,获得积分0
23秒前
Zz完成签到 ,获得积分10
24秒前
zhangpeng完成签到,获得积分10
24秒前
26秒前
粥粥完成签到,获得积分10
29秒前
30秒前
烦恼都走开完成签到,获得积分10
31秒前
刘翘铭发布了新的文献求助20
32秒前
雨辰完成签到,获得积分10
32秒前
朴实乐天发布了新的文献求助50
32秒前
34秒前
明天更好完成签到 ,获得积分10
35秒前
36秒前
LY发布了新的文献求助10
37秒前
艾达乳酪块完成签到,获得积分10
37秒前
安安完成签到 ,获得积分10
38秒前
zhangfuchao完成签到,获得积分10
38秒前
hhw完成签到,获得积分10
38秒前
自然怀梦完成签到,获得积分10
38秒前
悦耳如彤发布了新的文献求助10
41秒前
哈哈完成签到,获得积分10
41秒前
那些兔儿完成签到 ,获得积分0
46秒前
yy发布了新的文献求助10
48秒前
小马甲应助科研通管家采纳,获得10
49秒前
49秒前
gjx完成签到 ,获得积分10
49秒前
英俊的铭应助科研通管家采纳,获得10
49秒前
Orange应助科研通管家采纳,获得10
49秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801092
求助须知:如何正确求助?哪些是违规求助? 3346581
关于积分的说明 10329787
捐赠科研通 3063102
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726