亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Path-Based Formulations for the Design of On-demand Multimodal Transit Systems with Adoption Awareness

过境(卫星) 路径(计算) 计算机科学 运筹学 运输工程 公共交通 工程类 计算机网络
作者
Hongzhao Guan,Beste Basciftci,Pascal Van Hentenryck
出处
期刊:Informs Journal on Computing 卷期号:36 (6): 1459-1480 被引量:1
标识
DOI:10.1287/ijoc.2023.0014
摘要

This paper reconsiders the On-Demand Multimodal Transit Systems (ODMTS) Design with Adoptions problem (ODMTS-DA) to capture the latent demand in on-demand multimodal transit systems. The ODMTS-DA is a bilevel optimization problem, for which Basciftci and Van Hentenryck proposed an exact combinatorial Benders decomposition. Unfortunately, their proposed algorithm only finds high-quality solutions for medium-sized cities and is not practical for large metropolitan areas. The main contribution of this paper is to propose a new path-based optimization model, called P-Path, to address these computational difficulties. The key idea underlying P-Path is to enumerate two specific sets of paths which capture the essence of the choice model associated with the adoption behavior of riders. With the help of these path sets, the ODMTS-DA can be formulated as a single-level mixed-integer programming model. In addition, the paper presents preprocessing techniques that can reduce the size of the model significantly. P-Path is evaluated on two comprehensive case studies: the midsize transit system of the Ann Arbor – Ypsilanti region in Michigan (which was studied by Basciftci and Van Hentenryck) and the large-scale transit system for the city of Atlanta. The experimental results show that P-Path solves the Michigan ODMTS-DA instances in a few minutes, bringing more than two orders of magnitude improvements compared with the existing approach. For Atlanta, the results show that P-Path can solve large-scale ODMTS-DA instances (about 17 millions variables and 37 millions constraints) optimally in a few hours or in a few days. These results show the tremendous computational benefits of P-Path which provides a scalable approach to the design of on-demand multimodal transit systems with latent demand. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms—Discrete. Funding: This work was partially supported by National Science Foundation Leap-HI [Grant 1854684] and the Tier 1 University Transportation Center (UTC): Transit - Serving Communities Optimally, Responsively, and Efficiently (T-SCORE) from the U.S. Department of Transportation [69A3552047141]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0014 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0014 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到 ,获得积分10
1秒前
殷琛发布了新的文献求助10
1秒前
Tim888完成签到,获得积分10
3秒前
Dreamchaser完成签到,获得积分10
8秒前
9秒前
无辜的黄豆完成签到 ,获得积分10
11秒前
吾系渣渣辉完成签到 ,获得积分10
14秒前
14秒前
123发布了新的文献求助10
15秒前
微醺潮汐完成签到,获得积分10
17秒前
mmyhn应助科研通管家采纳,获得20
20秒前
andrele应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
所所应助FanKun采纳,获得10
20秒前
Li发布了新的文献求助10
23秒前
123完成签到,获得积分10
24秒前
27秒前
上官若男应助殷琛采纳,获得10
30秒前
奥利奥完成签到 ,获得积分10
31秒前
srx完成签到 ,获得积分10
32秒前
禅依完成签到,获得积分10
33秒前
FanKun发布了新的文献求助10
33秒前
虾球发布了新的文献求助10
35秒前
37秒前
赘婿应助禅依采纳,获得10
37秒前
我不到啊完成签到 ,获得积分10
38秒前
彭于晏应助VERITAS采纳,获得10
40秒前
tomato发布了新的文献求助10
44秒前
45秒前
inRe发布了新的文献求助10
46秒前
48秒前
殷琛发布了新的文献求助10
50秒前
zz发布了新的文献求助10
54秒前
57秒前
58秒前
传奇3应助殷琛采纳,获得10
58秒前
59秒前
秦小狸完成签到 ,获得积分10
1分钟前
VERITAS发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627829
求助须知:如何正确求助?哪些是违规求助? 4714854
关于积分的说明 14963247
捐赠科研通 4785572
什么是DOI,文献DOI怎么找? 2555178
邀请新用户注册赠送积分活动 1516526
关于科研通互助平台的介绍 1476936