Potato leaf disease detection with a novel deep learning model based on depthwise separable convolution and transformer networks

计算机科学 变压器 可分离空间 人工智能 深度学习 卷积(计算机科学) 模式识别(心理学) 人工神经网络 电气工程 电压 数学 数学分析 工程类
作者
Hatice Çatal Reis,Veysel Turk
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108307-108307 被引量:21
标识
DOI:10.1016/j.engappai.2024.108307
摘要

Early diagnosis of plant diseases is essential in reducing economic losses for farmers and increasing production efficiency. Therefore, Computer-Aided Diagnosis (CAD) systems supported by artificial intelligence technologies can be developed to help diagnose diseases quickly and accurately by examining the symptoms and signs in plant leaves. In this study, Multi-head Attention Mechanism Depthwise Separable Convolution Inception Reduction Network (MDSCIRNet) architecture, an image-based deep convolutional neural network, is proposed for classifying potato leaf diseases. The main components of the MDSCIRNet architecture are depthwise separable convolution (DSC) and a multi-head attention mechanism. The proposed architecture has been compared with modern algorithms developed with DSC technology, such as Xception, MobileNet, and deep learning algorithms, such as ResNet101, InceptionV3, and EfficientNetB2, to evaluate its performance in the classification process. In addition, hybrid methods developed with the classical machine learning algorithms Support Vector Machine (SVM), Logistic Regression (LR), Random Forest (RF), Adaptive Boosting (AdaBoost), and MDSCIRNet model, integrated deep learning model, hard voting ensemble learning model. Suggested methods such as these were also used in the experimental process. Moreover, techniques such as Contrast Limited Adaptive Histogram Equalization (CLAHE), Enhanced Super-Resolution Generative Adversarial Networks (ESRGAN), and Hypercolumn were used to improve the image quality of the data set. In the experimental process, the MDSCIRNet deep learning architecture achieved 99.24% accuracy in the study using the original dataset. While a 99.11% accuracy rate was achieved with the integrated deep learning model and hard voting ensemble learning model, the highest success rate of 99.33% was performed in the study conducted with the MDSCIRNet + SVM method. This study contributes to developing new and effective strategies in the agricultural industry for the early diagnosis and control of potato plant diseases. Machine learning-based approaches offer the potential to minimize economic losses and increase productivity in production by allowing farmers to intervene early.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
星辰大海应助时聿采纳,获得10
2秒前
段落落完成签到,获得积分10
2秒前
一个妮发布了新的文献求助10
2秒前
旷野发布了新的文献求助10
4秒前
5秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
羊青丝发布了新的文献求助10
8秒前
11秒前
行一封发布了新的文献求助10
12秒前
结实抽屉完成签到,获得积分10
16秒前
树池发布了新的文献求助10
17秒前
18秒前
小矿工完成签到,获得积分20
19秒前
19秒前
3dyf发布了新的文献求助20
20秒前
21秒前
22秒前
linney0325发布了新的文献求助10
23秒前
24秒前
gua发布了新的文献求助10
25秒前
26秒前
青树柠檬完成签到 ,获得积分10
27秒前
Tik完成签到,获得积分10
29秒前
32秒前
36秒前
38秒前
量子星尘发布了新的文献求助10
38秒前
haohao完成签到 ,获得积分10
38秒前
洛苏完成签到,获得积分10
40秒前
41秒前
汉堡包应助喜悦的铸海采纳,获得10
41秒前
42秒前
qqyqqyqqyqqy完成签到 ,获得积分10
42秒前
44秒前
清爽蹇发布了新的文献求助10
45秒前
littlepuppy发布了新的文献求助10
46秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864457
求助须知:如何正确求助?哪些是违规求助? 3406886
关于积分的说明 10651543
捐赠科研通 3130758
什么是DOI,文献DOI怎么找? 1726577
邀请新用户注册赠送积分活动 831814
科研通“疑难数据库(出版商)”最低求助积分说明 780039